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Abstract 
Object recognition is an interesting task in computer vision with a wide range of real world 

applications. While object recognition in still images has achieved impressive performance, 

object recognition in videos is yet to be explored. Due to motion blur and other complexities, 

still image methods directly applied to videos frames usually cannot yield satisfying results, 

which calls for the need to better study and incorporate temporal information in videos. In 

this project, the baseline framework is chosen to be T-CNN [1], which leverages video’s 

temporal and contextual information by post-processing techniques such as motion-guided 

propagation and tracking. However, temporal information is only incorporated after still-

image detection results are obtained, and some of the post-processing processes are time 

consuming. This project therefore attempts to address these two issues by utilizing temporal 

information at the feature and proposal level, as well as improving the post-processing 

efficiency. The objective is to increase the mean Average Precision under the setting of 

ImageNet VID task [2].  
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1. Overview 
Object recognition, which refers to the task of identifying objects in image or video inputs, 

has become an active research topic over the recent years. There have been many models for 

object recognition on still images with impressive performance, while video inputs are much 

less experimented with. It has been shown that models trained on still images cannot achieve 

comparable results when directly applied to video inputs, which may be explained by the 

different characteristics of image data and video data. For example, video frames tend to be 

of lower resolution than still images, and the objects may experience motion blur, viewpoint 

changes or occlusion, all of which can make recognition more challenging. 

Fortunately, videos are more than simple collections of images. Apart from information in a 

single frame, videos also contain contextual information across frames, which should be 

incorporated to help improving the performance. For example, objects from neighboring 

frames are expected to follow temporal consistency, suggesting that the locations and 

classification results for detections on different frames should not fluctuate dramatically. 

Consequently, the position of an occluded object may be inferred from detection results 

obtained in its neighboring frames. 

To utilize these information and constraints, we chose to base our framework on T-CNN 

(Tubelet with Convolutional Neural Network [1]), the winning framework of the challenge 

“Object detection from video” in ILSVRC2015, which takes advantage of both temporal and 

contextual information. T-CNN addresses the problem by first using state-of-art detection 

frameworks, and employing temporal information through a set of post-processing techniques. 

Specifically, it uses motion-guided propagation to make up for missing detections to impose 

short-term temporal consistency, and uses tracking algorithms to generate “tubelets” followed 

a binary classification rescoring step to exploit long-term temporal consistency,. 

Starting from T-CNN, we attempt to improve this baseline framework from two aspects, both 

on the single-frame detection results and the post-processing techniques. Regarding single-

frame results, it was observed during our experiments that they could impose limitations on 

the effectiveness of T-CNN’s post-processing methods, which encouraged us to introduce 

temporal information early into the framework at the feature level so as to obtain more 

informative features, as well as add a temporal loss to encourage consistency between 



6 

 

neighboring frames. On the other hands, experiments have shown that some post-processing 

techniques may be the reason for the entire pipeline to be rather time consuming and 

computationally expensive. To address this, we propose to change the pipeline by rearranging 

the modules and trying to seek alternatives for tracking. 

This report will first specify the objective of this project and the task settings. It will then 

explain the proposed modifications, followed by experiment results, and briefly discuss the 

future works. 

 

2. Objective 
The objective for this project is to improve the mean Average Precision (mean AP) on the 30 

classes in ILSVRC2015 VID dataset [2]. A better performance is indicated by a higher mean 

AP, which is defined as 

 

In the above formula, N denotes the number of classes, P(k) is the precision at cutoff k, m is 

the number of ground truth objects of the class, and n is the correctly recognized objects. 

Due to some modifications and limitations explained below, the performance of this project 

will not be directly compared to the mean AP as reported in the original T-CNN paper. Instead, 

the performance baseline will be set as the results obtained in this project. Performance gain 

over the baseline will be used as the success measure. 

 

3. Task Settings 

3.1 Evaluation protocol 

The evaluation protocol in this project follows the specification of the video challenge in 

ImageNet ILSVRC2015 [2]. Each detection result is in the form of (fi, ci, si, bi), where fi, ci, si, 

bi denote the frame number, the class ID, the confidence score and the bounding box 
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coordinates, respectively. Performance is measured by mean AP, where missing and duplicated 

detections for an object are penalized. 

This project uses the training and validation set in video dataset VID, which contains 3862 

video snippets (1122397 frames) and 555 video snippets (176126 frames) respectively. Both 

sets are fully annotated with 30 classes. The VID training set is split for training and validation 

(split ratio = 9:1, similar to the original ImageNet setting), while the VID validation is used 

for performance testing. 

3.2 Regression loss 

The regression loss is defined using smooth L1. The proposal network used in this project 

namely RPN outputs four entries, and the regression loss is defined the sum of the four: 

 

Smooth L1 differs from L1 by using quadratic loss for small errors d: 

 

3.3 Classification loss 

The classification loss for the detection framework is defined using negative-log likelihood 

(NLL). Likelihood refers to probability and adds up to 1 for all classes. 

 

 

Assuming the independency among different samples, accumulating likelihoods over all the 

samples is equivalent to taking the product of the likelihoods over all samples. Then by 

taking logarithm, the product of likelihoods becomes the sum of log-likelihoods. Finally, 

since likelihoods are less than 1, negating their logs results in positive values. 
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The goal of training the classification network is to maximize the likelihoods of generating 

correct predictions, which is mathematically equivalent to minimize NLL. In practice, NLL 

is preferred for being computationally more stable. 

For example, the probability to output each of 31 classes (30 object classes + 1 background 

class) at the beginning of the training is 0.032 (i.e. uniformly distributed over each class), 

which corresponds to a negative log likelihood of 3.43. 

 

4. Methodology 

1. Baseline T-CNN Framework 

Figure 1 shows the overview of the T-CNN framework [1], which consists of four parts: 

 

Figure 1. T-CNN framework. Reprinted from T-CNN: Tubelets with Convolutional Neural Networks for Object 

Detection from Videos by Kang K, Li H, Yan J, Zeng X, Yang B, Xiao T, Zhang C, Wang Z, Wang R, Wang X, 

Ouyang W. arXiv:1604.02532v3, 2016. With consent of the first author. 

a) Still image detection 

Each video is first parsed into a sequence of frames, on which T-CNN then uses DeepID-

Net [8] and CRAFT [9] to perform still-image detection. Results from these two detectors will 

be treated separately in the second and third stage, and get combined in the final stage.  
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b) MCS and MGP 

The still-image detection results then enter the second module, which consists of two steps: 

Multi-Context Suppression (MCS): MCS sorts all detections by their confidence scores, and 

sets the classes corresponding to the top detections to be “top classes”. Detections belonging 

to the top classes will then be awarded a bonus score, which gives them an advantage in the 

NMS process during score averaging. In this way, MCS essentially suppresses false positives. 

Motion-Guided Propagation (MGP): First, an optical flow is calculated for each frame. Then 

for each frame, all detections in the current frame get propagated to neighboring frames, where 

the location of each detection is adjusted according to the optical flow. MGP can help make 

up for missing detections, hence mitigate the impact of false negatives. 

c) Tubelet Re-scoring 

In addition to MCS and MGP, still-image detection results are fed into the third component 

to enforce long-term temporal consistency. For each video, a tracking algorithm first generates 

sequences of bounding boxes called “tubelets”, then refines the tubelet boxes by max-pooling 

over neighboring detection boxes. Each tubelet is then classified as either positive or negative, 

after which confidence scores of the tubelet boxes are re-distributed to increase the margin 

between positive and negative detections. 

d) Model Combination 

Results from previous stages are combined by a non-maximum suppression (NMS) process 

to get the final scores. 

2. Proposed Modifications 

Three modifications are proposed to reduce the computation cost of T-CNN and to 

improve single-frame results. 

a) Selected MGP and NMS variants 

This modification is regarding the post-processing stage. During experiments it was 

found that MGP could lead to much longer running time, because it resulted in a 

larger number of detections which would affect later operations. This problem can 
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be mitigated by propagating a smaller number of detections, which is proposed to be 

achieved in two ways: 

1. Move MGP to be after NMS: after MCS, perform non-maximum suppression 

(NMS) before MGP such that only a small number of high-confidence detections 

remain, which then get propagated to neighboring frames (as shown in Figure 2). 

2. MGP only if above a threshold: instead of propagating all detections, only 

propagate detections whose confidence score is beyond a threshold. 

 

Figure 2: Selected MGP and NMS variants 

Moreover, directly performing NMS for combining propagated results may not be 

appropriate, since the propagated locations could be inaccurate due to errors in the 

optical flows, and the confidence scores from different frames may not remain 

meaningful due to the change in image quality. We therefore experimented with 

several other methods to combine the propagated detections. Detailed explanations 

and results for these experiments are presented in section 7 – “Second Phase - 

Experiments”. 

b) Temporal information at the feature level 

As discussed in the Progress section, the post-processing techniques have limitations, 

and the final results depend largely on the single-frame results. It is therefore 

necessary to improve the single-frame detectors. Inspired by MGP, we plan to use 

information from neighboring frames as contexts to complement the results on a 

certain frame. Instead of propagating boxes after the detections are fixed, we propose 
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to use contextual information at a feature level, such that the proposal network and 

the classifier can benefit from the enhanced feature maps. 

The single-frame detector currently used in this project is Faster R-CNN [3], whose 

structure overview is shown in Figure 2. 

 

Figure 3. Faster R-CNN [3] 

We propose two approaches to incorporate information from neighboring frames in 

faster R-CNN: 

1. 3D convolution to combine feature maps from neighboring frames. In 

faster R-CNN, feature maps are produced from one input image after going 

through a stack 2D convolutional layers. For this  modification, we propose to 

use a set of 3D convolutional layers, which produce the same feature maps while 

using three frames as input (i.e. the previous, current and next frame). The 

weights for convolutional layers are shared to make sure to features extracted 

from different frames are the same and to keep the number of parameters 

moderate. The structure is shown in Figure 4. 
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Figure 4. 3D convolution to combine feature maps 

2. Warp adjacent feature maps using optical flow. This approach differs from 

approach 1 in that the combination of feature maps is guided by the optical flow, 

rather than being uncontrolled as in approach 1. After the first convolutional 

layer where low level features are extracted, feature maps from the previous and 

next frame are warped following the optical flow and merged with the feature 

map from the current frame. The combined feature maps then go through the 

rest of the convolutional layers as in Faster RCNN. 

 

Figure 5. Merged feature maps using optical flow 

c) Motion-guided proposals 
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In MGP, propagating boxes helps to recover locations that have been previously 

missed out by the detection framework thus reducing false negatives. However, 

since both the location and the confidence score of a propagated box could be 

inaccurate, it would be desirable if they could be refined by the detection network.  

Therefore, instead of propagating bounding boxes after the detection phase is 

completed, we propose to propagate the proposals before entering the classification 

phase, which would allow the last two fully-connected layers of Faster RCNN to 

refine the propagated locations and examine the class labels. This would not 

introduce much computation overhead to the detection framework since other 

parts of the framework are kept unmodified. 

d) Temporal loss 

Detection results on adjacent frames should be temporally consistent. Therefore, 

when training the detector, in addition to the classification loss and regression loss 

used in faster R-CNN, we propose to add an additional term for temporal loss, 

which penalizes the inconsistency between the current frame and the previous 

frame. 

Each frame is associated with a heat map on which the temporal loss is calculated. 

The pixel value on the heat map is defined as the sum of the confidence scores of 

detections whose bounding box covers this pixel, and the temporal loss is defined 

as the difference between two heat maps: 

 

where Xt is the heat map at time t and Y is the heat map warped from time (t-1) 

using the optical flow: 

 

Therefore the total loss now becomes 
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       where α is an adjustable weight. The formula was inspired by [15]. 

 

5. Phase One & Two - Preparations 

a) Project Website 

A project website is set up at http://i.cs.hku.hk/fyp/2016/fyp16033/ which is updated with 

the latest project progress and documentations. 

b) Environment setup 

This project runs on a server with 2 GPUs. Following the prerequisites for T-CNN, the server 

is installed with Caffe [4] for networks in the single-frame detectors and the tracker, GNU 

Parallel [5] for parallel computing, “matutils” [6] for easy file manipulation, and MATLAB 

Engine API [7] to support invoking MATLAB functions from Python. 

c) Reproducing the results 

We reproduced the T-CNN framework and obtained a performance baseline. Below are the 

progress details and some major decisions made during this process: 

i) Feasibility test 

The entire T-CNN framework has been executed successfully on the server. Feasibility 

tests were conducted on one training snippet and one validation snippet. For each 

snippet, the framework correctly produced a set of tubelets, each tracking an object in 

the snippet. 

Below are some major results obtained during the feasibility test: 

a) Replace CRAFT with Faster R-CNN 

CRAFT [9] is based on faster R-CNN, however is significantly more complex and 

more computationally costly due to the additional classifiers it uses. After trading off 



15 

 

between the performance gain and the computation cost, we plan to replace CRAFT 

[9] with Faster R-CNN. 

b) Reduce noisy proposals by EdgeBox 

Object proposals generated by EdgeBox [10] were examined through a simple GUI 

tool we built. It was shown that a large proportion of the proposals were about 

background regions, which did not contribute to the detection. Therefore, 

thresholding can be used to eliminate candidate proposal regions and thus help 

reduce the computation cost for detection. 

In general, highly scored proposals are more likely to contain a target object, however 

this relation was shown to be not strict. When raising the threshold from 0 to 0.05, 

number of proposals on a sample image decreased from 1798 to 818, which reduced 

the detection time by around a half as expected. However, when the threshold was 

raised to 0.2, only 21 proposals were left, which all turned out to be highly scored 

background regions, suggesting that an overly strict threshold can be harmful. On 

the other hand, the lowly scored ones were safe to eliminate. After some experiments, 

the number of proposals was set to be between 100 and 300, i.e. max(100, min(score > 

0.1, 300)) 

c) DeepID-Net was removed 

Object detection by DeepID-Net [8] seemed to be extremely slow. When directly 

using EdgeBox proposals, it took about 17 minutes for DeepID-Net to detect all 

proposal regions in a single frame, which would make the cost for testing prohibitive 

given the large number of frames. 

After setting threshold to eliminate some proposals as discussed above, the detection 

time was reduced to around 1/6 of the original time. 

We also tried to eliminate absent classes at an early stage, which resulted in a 5 time 

speedup. Because of the context information in videos, a class’s failing to be detected 

in a large number of frames is a strong indicator that objects of this class are absent 

in this video snippet, in which case the detector can skip detecting for this class in 

the remaining frames. To avoid being too aggressive, the elimination would be 
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stopped when there were less than 5 classes remaining. 5 was considered to have 

enough buffer reserved for false negatives based on our observations on the video 

snippets. Typically, absence can be confirmed within 10 frames; however for long 

snippets with more than 100 frames, class counters were reset at every 100 frames to 

avoid being overly aggressive. 

These two approaches resulted in a roughly 30 time speedup that reduced the 

detection time per frame to around 30 seconds, which however was still significantly 

more expensive compared to faster R-CNN’s mean detection time of less than 0.05 

second per frame. In addition, in the original T-CNN, DeepID-Nets produced worse 

results than CRAFT, and combining the results from two detectors only gave an 

slight performance gain over CRAFT of 0.2. 

Therefore, after trading off between a considerable computation cost and a slight 

performance gain, DeepID-Net was removed from our framework. Though 

DeepID-Net is no longer in use, the techniques attempted to speed up and GUI tools 

we built to examine the results could be helpful in later experiments. 

d) Expensive tracking 

Tracking on a single video snippet took around 45 minutes, which was not too 

surprising since trackers are known to be computationally costly, but would be too 

time consuming to be used in each test. Therefore, we decided to temporarily remove 

it from the framework, and add it back after other parts of the framework are tested 

and fixes. In the meantime, we will seek for different tracking methods as 

replacement, which can be tested separately from the rest of the framework. 

ii) Coarse baseline using Faster R-CNN trained on VOC dataset 

After the feasibility test, we ran T-CNN on the entire VID validation set to get a coarse 

baseline performance, and to estimate the cost for each step. 

a) Mean AP: 37.8 on 12 classes 

We used a faster R-CNN trained on PASCAL VOC, and took the results on the 12 

classes common in VID and VOC. VID classes that are absent in VOC were padded 



17 

 

with zeros. The mean AP on these 12 classes is 37.8, which is much lower than the 

original T-CNN’s performance of 67.8. 

There may be two reasons that mainly account for this performance gap. First is the 

difference in faster R-CNN’s training VOC and the testing data VID. For example, 

VID frames tend to be more blurry than VOC images, while blurriness is of major 

impact on performance [11]. Second, our faster R-CNN is implemented using ZF 

net [12], while the original T-CNN used VGG net [13]. The latter yields a better result, 

however it is 3.2 times slower than ZF and much more memory consuming [3]. 

Though being less accurate, ZF is chosen in this project due to limited time and 

computation resources. 

b) Post-processing techniques are effective but have limitations 

Results from faster R-CNN alone gave a mean AP of 30.2, while MCS & MGP and 

tubelet tracking altogether helped raise it to 37.8. The increase is 7.6, which is 

comparable to the performance gain of 5-7 as reported in T-CNN paper.  

However, post-processing techniques have their limitations. The performance gains 

obtained in both the original T-CNN and our experiments are similar, suggesting that 

these techniques can only contribute to the performance to a certain extent. 

Moreover, their effectiveness relies on an assumption that false detections are not 

dominant, which may not always hold. For example, it was found that in some videos, 

false positives took up the better part of the detections and had some of the highest 

scores, leading to the correct class being suppressed in MCS and NMS. In other 

words, though post-processing techniques were effective, the final results are limited 

by the single-frame results. It is therefore necessary to improve the single-frame 

results, which has led to the second and third modifications in the Methodology 

section. 

c) MGP results in too many duplicates 

By duplicating detections, MGP results in larger detection files. Consequently, later 

stages such as tracking and score averaging take longer. For example, score averaging 

could take up to 10 hours on the results after MGP for one video, while without 
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MGP it only took about 4 hours on all 555 testing videos. Possible solutions such as 

changing the order of MGP or propagating only high confidence detections were 

discussed in the methodology section. 

iii) Training Faster R-CNN with VID 

We have trained faster R-CNN using a subset of VID training set, which consists of 

1000 randomly sampled images per class for training and 150 for validation. The 

resulting mean AP is 21.4, even lower than the result using faster R-CNN trained on 

VOC. 

This poor result may be due to overfitting and large learning rate. The performance 

on validation set was 52.6, much higher than the testing error, suggesting the need of 

using a larger training set. The error plateaued after 40k iterations, therefore decreasing 

the learning rate afterwards may help drive down the error. Since we plan to switch 

from Caffe to Torch for faster R-CNN, we decided to perform hyper parameter tuning 

after the Torch implementation is ready. 

 

6. Phase Three - Experiments 

6.1 Post-processing: selected MGP and NMS variants 

6.1.1 Selected MGP  

T-CNN propagates all detections from neighboring frames to the current frame in an attempt 

to make up for false negatives, then conducts NMS to combine these detections. However, 

this approach may lead to redundant computation. Since optical flows do not affect the relative 

positions among detections, if a bounding box is going to get suppressed in NMS on its own 

frame, then it is very likely for this box to get suppressed again after getting propagated to 

some neighboring frame. Therefore, T-CNN’s way of conducting MGP may result in too 

many unnecessary duplicates which lead to redundant computation and can hinder the 

performance. It is therefore natural to attempt to reduce the number of detections being 

propagated, to which we proposed two ways: 

a) Adjust the order in which NMS and MGP are performed 
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We attempted to perform NMS twice: the first NMS is performed separately on each 

neighboring frame; then after the resulting highly scored detections get propagated, the second 

NMS is performed on the current frame to get the final results. Performing NMS twice may 

sound to require repetitive efforts, but it has been shown in our experiments that this can 

significantly reduce the time for MGP. As a comparison, the original MGP over the VID 

validation set would require around 11 hours, while our modification reduced the time to less 

than 4 hours. 

It was also discovered that splitting NMS into 2 stages helped improve the overall results. As 

shown in Table x, the mean AP increased from 25.1 to 26.6. A possible explanation to this 

may be that some relatively highly confident detection boxes from neighboring frames can get 

eliminated early when performing NMS within each frame. As explained in 6.1.2 (b), the 

confidence score may not be very meaningful for propagated boxes, therefore NMS within 

each frame can get rid of some neighboring detections that are otherwise going to suppress 

the more accurately located boxes from the current frame. 

b) Propagate only high-confidence detections 

This approach gave the same results as the original MCS & MGP, which is understandable 

since it simply avoids duplicating low confidence detections which are going to be ruled out 

in the final NMS, and does not help eliminate the error caused by highly confident propagated 

detections. 

Results for (a) and (b) are presented in the following table: 

Class Airplane Antelope Bear Bicycle Bird Bus Car Cattle Dog Cat 
original 

MGP 
63.2 20.2 19.0 36.9 16.1 28.8 32.7 26.5 12.7 5.4 

selected 
MGP (a) 

65.1 20.5 19.8 40.9 18.0 29.1 34.4 27.2 13.5 5.7 

selected 
MGP (b) 

63.2 20.2 19.0 36.9 16.1 28.8 32.7 26.5 12.7 5.4 

Class Elephant Fox Giant-
panda Hamster Horse Lion Lizard Monkey Motor-

cycle Rabbit 

original 
MGP 

33.0 33.8 53.0 10.9 40.6 0.0 6.5 12.9 56.9 2.0 

selected 
MGP (a) 35.5 35.5 55.7 11.6 45.5 0.0 7.9 14.8 57.9 1.8 

selected 
MGP (b) 

33.0 33.8 53.0 10.9 40.6 0.0 6.5 12.9 56.9 2.0 
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Class 
Red 

panda 
Sheep Snake Squirrel Tiger Train Turtle 

Watercr
aft 

Whale Zebra 

original 
MGP 

5.3 25.8 4.0 1.6 33.9 34.0 13.6 35.7 25.2 63.1 

selected 
MGP (a) 

6.2 26.7 4.3 2.1 36.9 36.4 13.5 38.1 27.1 65.0 

selected 
MGP (b) 5.3 25.8 4.0 1.6 33.9 34.0 13.6 27.1 25.2 63.1 

Table 1. Results of MGP 

Mean AP: 

Original 25.1 Selected (a) 26.6 Selected (b) 25.1 

 

6.1.2 Different methods to combine detections 

In T-CNN, propagated detections and detections from the current frames are collected, over 

which NMS is performed where propagated detections and detections directly obtained from 

Faster RCNN are treated equally when getting combined. This method may sound 

questionable, since detections directly obtained from the detection framework are supposed 

to be more reliable than propagated detections which are likely to be negatively affected by 

inaccurate optical flows. Therefore, we tried to assign different priority to the detections, and 

proposed with different methods to combine the propagated detections in addition to NMS. 

Following is a list of methods we have experimented with: 

a) Plain NMS (baseline) 

This is the method used in T-CNN, where the final results are given by performing NMS 

on detection boxes from both the current frame and neighboring frames. 

b) Keep current-frame results with high confidence scores 

The plain NMS treats all detections equally, which means a propagated detection can 

suppress a detection on the current frame because of a higher score. However, it may not 

be appropriate to directly compare the scores of detections from different frames, since 

the frames may not be of comparable image quality. For example, an object may be 

detected with high confidence in frame at time t but much less so in frame at time t+1 

because the latter is more blurry. Then for frame at time t+1, its own best detection will 
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be suppressed by a propagated one, which has a not very meaningful high score and is at 

a worse location. 

Therefore, it is the bounding box locations rather than confidence scores that is more 

likely to remain meaningful after the propagation. Since imperfect optical flows will make 

detections propagated from neighboring frames less accurate, more priority should be 

given to detections in the current frame. This method therefore tries to keep the highly 

confident detections from the current frame, and only takes consideration of the 

propagated boxes when none of the current detections has a confidence higher than a 

threshold. 

c) Weighted NMS 

This shares the same idea with (b) to give more confidence to detections on the current 

frame, where different weights are assigned to the bounding boxes such that detection 

from a closer frame will have a better impact. Weights decreasing linearly with the frame 

difference and weights following 1D Gaussian distributions were tried out. 

d) Averaging 

This method uses the weighted average of detection boxes as the combination result. In 

NMS, boxes get suppressed when there exists a box with higher score and an IoU beyond 

a certain threshold. Hence equivalently, NMS can be considered to being selecting the 

most highly scored one out of a cluster consisting of the most highly scored and the 

suppressed detection boxes. 

In this method, clusters of detections are formed following the same IoU criteria, but 

instead of picking the one with maximum confidence score, it outputs the weighted 

average of the cluster. To form clusters, all detection boxes are first sorted according to 

their confidence scores; the list of boxes then gets traversed starting from the most highly 

scored detection, and each remaining box (i.e. with a lower confidence score) is added to 

the cluster if its IoU is beyond a threshold. Similar to Kalman filter [14], propagated boxes 

correspond to predictions, and proposals in the current frames are present measurements 

directly obtained from the detection framework. Karlman filter has shown that weighted 
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average considering both the predictions and the measurements can yield better results, 

therefore we expect proposals generated in this way to be more reliable. 

e) Remove detections corresponding to parts of a larger detection 

It was discovered that some false positives are caused by labeling some part of an object. 

For example, in the left image of Figure 6, the chimney, wheels, and the roof of the train 

each gets detected separately, which is understandable since these areas all contain rich 

features. 

In circumstances like this where the detection corresponds to a part of a larger object, the 

IoU between the part’s bounding box and the bounding box for the object is 

approximately the portion of the part with respect to the entire object. Consequently, the 

IoU can be low when a part is small, in which case NMS may fail to suppress the part’s 

bounding box with the object’s and thus result in false positives. 

Unlike IoU, such false detections usually has a high “Intersection over Minimum” (“IoM”), 

which is defined as the area of intersection over the area of the smaller bounding box. As 

an example, the IoU for the chimney, wheels, and the roof are 0.06, 0.1662, 0.1444 

respectively, all of which are below the IoU threshold 0.5; but their respective IoM are 

0.8312, 0.7588, and 0.9515, which are far beyond the threshold (this could be a different 

threshold) and thus can be eliminated safely. Figure 6 shows a comparison between using 

an IoU of 0.5, versus using an IoU of 0.5 and an IoM of 0.7 when the IoU is below the 

threshold. 

 

Figure 6. Bounding boxes obtained from NMS (left) and after removing parts of objects (right) 

 

f) Remove false positive clusters 
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As mentioned previously, clusters can be formed by grouping detections whose IoU with 

a particular more highly scored detection is beyond a threshold. Because of the first NMS 

before propagation, boxes present at the combining stage usually come from different 

frames (with a possible exception being two disjoint small detection boxes from the same 

frame being added to a cluster formed by a more confident larger box from a different 

frame). Therefore, the number of boxes in a cluster is roughly the same as the number of 

frames which gives a positive detection result; hence the higher the number of boxes a 

cluster has, the more confident it is for this cluster to cover an object. Conversely, if a 

cluster consists of too few boxes, then it is very likely for this cluster to be a false positive, 

in which case it should be eliminated. 

In the experiments, the threshold is set to be 2 for a window size (i.e. number of frames 

from which detections get propagated) of 5 and to be 3 for a window size of 7. Boxes 

belonging to clusters with fewer detections are removed. 

g) Keep only frequently appearing classes 

It is worth noting that the process described above only takes into consideration the 

confidence scores, but not the class to which the detection belongs. This is understandable 

since at this point the class label is yet to be refined. To refine the class using contextual 

information, we would like to assign more confidence to detections from more frequently 

appearing classes, which has a similar rationale to that of MCS which adds a bonus point 

to classes with the mostly highly scored detections. 

When forming clusters for each frame, the program keeps track of the number of 

detections or the sum of their confidence scores corresponding to each class. Classes with 

the highest count or sum of confidence scores are considered as “true class”. Other classes 

whose count is below ½ of the true class’s count or whose sum of confidence scores is 

below 2/3 of the true class’s sum are removed in an attempt to further reduce false 

positives. 

(f) and (g) both attempt to utilize information which can reflect temporal consistency at a 

longer term. Though there was no explicit matching procedure between boxes from different 

frames, statistics such as number of proposals and the range of confidence scores are expected 

to help relate the detection results and exploit temporal consistency. 
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In addition, some of the above methods can be used together. For instance, false positive 

clusters can be removed before using weighted average, and detections that are likely to be 

parts of a larger object can be removed during NMS. Using Caffe implementation of Faster 

RCNN model trained on a dataset of 30K images, we experimented with several combinations 

with varying window sizes, and some of the results can be found in the appendix. 

A summary of the results is as follows: 

For NMS: 

a) Window size 5 or 7 has negligible effect; 

b) False positive clusters should be kept; 

c) Keeping only “true classes" had no effect; 

d) Weighted NMS can help improve the results, but different kinds of weights had similar 

effects. 

For averaging: 

e) Smaller window size is preferred; 

f) False positive clusters should be removed; 

g) Removing parts of a larger object is helpful. 

Overall, NMS methods produced much better results than averaging methods. Removing 

positive clusters or “false classes” seemed to be too aggressive in eliminating results for NMS 

methods, however they appeared to be desirable for averaging methods. Together with the 

observation that averaging methods produced much poorer results, this could be explained 

that the averaging process is prone to noisy results, therefore aggressively removing less 

reliable detections may effectively decrease the disturbance. This also agrees with the 

observation that smaller window size tends to give better results. 

Some other methods may only be useful to specific classes. For example, removing parts of a 

larger detection resulted in a 3.1 increase in average precision for “train”, but also a 3.6 

decrease for “sheep”. 
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To conclude, selected MGP can help to improve the results, while NMS variants did not 

provide significant improvement over all classes. 

 

6.2 Temporal information in Faster RCNN: volumetric convolution and 
propagated proposals 

As explained in the methodology section, it may be beneficial to make use of the temporal 

information early in the feature level. Instead of detecting on single images, we propose to 

feed the network with 3 input images (the current frame, and the frame before and after), 

hoping the combined feature maps to yield a better result. 

6.2.1 Training data 

The training dataset consists of 64216 unique images containing 30 classes. For the list of 

videos corresponding to each class, at most 50 video snippets are sampled for each class to 

make sure the training data will not be dominated by only a few classes. For each video snippet, 

frames are sampled at an interval of 3, for example, the 1st, 4th, and 7th frames. The reason for 

not using adjacent frames is that adjacent frames may be too similar to provide notable 

variances which are expected to contain complementary information. The choice of interval 

value 3 resembles the T-CNN’s MGP window size of 7. All training data comes from VID 

training set and are fully labeled. When used in training, each image is normalized by 

subtracting the image mean and divided by standard deviation. Horizontal flip is used for data 

augmentation. 

6.2.2 Changing from Caffe to Torch 

Previous results are obtained based on the official Caffe implementation [3] of Faster RCNN. 

Due to the complexity of Caffe, we decided to change the framework to Torch [16], which is 

generally considered to be more flexible and easier to experiment with. The baseline torch 

implementation is https://github.com/andreaskoepf/faster-rcnn.torch which credits to 

Andreas Kopf. 

For this torch implementation, we changed the backbone structure from VGG net [13] to ZF 

net [12], since the latter is easier to train by having fewer layers and parameters as well as more 

efficient both computationally and in terms of memory consumption. 
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6.2.3 Joint training to alternating training 

The baseline implementation jointly trains the network, where proposals are produces RPN 

based on features obtained from the 5 convolution layers, then get fed to Fast RCNN to 

perform ROI pooling on the same set of feature maps for the classification results.  

Figure 7 shows the curve for joint training using RMSprop as the optimization algorithm, with 

a batch size of 128 and a learning rate of e-5. 

    

Figure 7: joint training: classification error for fg/bg proposals (left) and classification for 31 classes (right) 

The graph on the right show that the classification error for the 31 classes plateaus at around 

1.5-1.6, which corresponds to a likelihood of 0.213. Different batch sizes, starting learning 

rates and learning rate update strategies were also tried out but yielded similar results. As a 

comparison, the classification loss for the official Caffe implementation of Faster RCNN is 

0.246 at the end of training, which corresponds to a likelihood of 0.77. The Caffe model’s 

loss is 3.548 at the beginning, and drops to 0.510 after around 20 iterations, and drop from 

0.367 to 0.246 during iteration 2000 to iteration 60000. For torch models, the loss curves 

were similar when using VGG and ZF. 

This training loss did not seem to update very effectively based on our training results and 

some comments found online, which we assumed might be related to the joint training 

strategy. Since Faster RCNN shares convolution layers between RPN and Fast RCNN, in 

the implementation the two differ by an anchor network or two fully-connected layers after 

the convolutional layers. A possible explanation to the poor training results is that RPN and 

Fast RCNN may update weights for the shared convolutional layers differently which makes 

convergence difficult. Therefore, we decided to change the strategy to alternating training. 
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For alternating training, the proposal network RPN and the classification network Fast 

RCNN are trained separately, where Fast RCNN uses the proposals produced by RPN. 

6.2.3.1 Proposals 

a) RPN 

We started with generating proposals using RPN, which is the same torch implementation as 

mentioned above. Figure 8 shows some examples of training batches. 

 

Figure 8: Examples of training batches: blue, green, and red boxes denote the ground truth, positive 
samples, and negative samples, respectively. 

To obtain positive samples, first scan the region containing ground truth in a sliding-window 

fashion, and prepare 12 candidate boxes for each location within this region, corresponding 

to three aspect ratios (1:2, 1:1, 2:1) and four scales (48, 96, 192, 384). Candidate boxes with a 

ground truth IoU higher than a threshold are marked as positive samples. 

Negative samples are obtained from two approaches. The first approach samples boxes at 

random locations with an IoU below the threshold; the second approach generates boxes 

which share the same anchors with the positive samples, however are at a much larger or 

smaller scale such that the IoU is low. The combination of these two types of boxes 

guarantees the balance of positive and negative samples in each training batch. 
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Figure 9: First row: examples of proposals generated in early iterations; Second row: examples of proposals 
generated in later iterations. Proposals are in green and ground truths are in blue. 

RPN is used by the official Caffe implementation of Faster RCNN and is reported to give 

decent results. However, our torch implementation failed to achieve similar performance. As 

shown below,  

Proposals generated in forward passes during the training were used as a temporal solution. 

b) EdgeBox 

As the proposals generated by our implementation of RPN were not satisfying, we tried to 

use EdgeBox [10] to obtain proposals. Figure 10 shows some examples of EdgeBox’s 

proposals. 

 

Figure 10: proposals successful generated by EdgeBox. 
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Figure 11: images where EdgeBox fails to produce reasonable proposals: 

(left) too many boxes for the bicycles; (right) zero box proposed for the bear. 

On the other hand, Figure 11 shows that the quality of proposals can vary significantly. It can 

be seen that EdgeBox excels at objects that are well-posed and contrast strongly with the 

background; however, there are also cases where EdgeBox may fail. As in the bicycle 

example, small objects may fail to be detected, and the large number of proposals may due 

to the rich features in the background. For the bear example, the image’s being blurry and 

smooth changes may have caused EdgeBox’s failing to produce any proposals. 

6.2.3.2 Classification 

Fast RCNN used in this project is forked from https://github.com/mahyarnajibi/fast-rcnn-

torch and credits to Mahyar Najibi. The classification loss converged for a test run on a small 

dataset consisting 300 images. The loss curve for training is presented in Figure 13 together 

with the curves for the modified versions. 

 

6.2.4 Spatial convolution to volumetric convolution 

As mentioned earlier, it seems that all the existing methods for video object recognition 

integrate temporal information after single-frame detection results are obtained, which may 

not be able to maximally take advantage of the information since the single-frame results 

usually pose limitations on the performance. This project therefore attempts to introduce these 

temporal information early in the detection framework at the feature level. 

h) Sequences of three frames as inputs 

To achieve this, three input images are fed into the detection framework rather than a 

single one, changing the input tensor from dimension 3 * W * H to 3 * 3 * W * H (the 

first 3 is number of channels per image, the second 3 is the number of input frames). 
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Following the architecture suggested in [17], the three images are first forwarded through 

a common convolutional layer, where the weight sharing is ensured by setting the filter 

size along the temporal dimension to be 1. The resulting feature map is now 96 * 3 * W’ * 

H’, which is then reshaped (i.e. concatenated along the time dimension) to be 288 * W’ * 

H’. A 1*1 spatial convolution is then performed to reduce the feature map to a dimension 

compatible in later layers, followed by a spatial max pooling layer and a cross-channel local 

response normalization layer. The remaining part of the network is the same as the original 

ZF net. Figure 12 shows the network structures of the original ZF net and our volumetric 

version. 

 

Figure 12: (left) original ZF net; (right) modified ZF net with the first layer changed to volumetric convolution 

i) Spatial filter size of 1 * 1 

The spatial convolutional layer following the volumetric convolution and reshaping is 

expected to select the best features out of the three feature maps obtained from the three 

frames. Note that the filter size of is 1*1, which means no further spatial variances is 

considered in this layer. We consider this to be acceptable, since the shared volumetric 

convolutional layer has a large filter size of 7*7 (omitting the temporal dimension which 



31 

 

is 1), which should have taken into consideration a region that is large enough to cover the 

variances among neighboring frames. 

j) Combining feature maps after two shared convolutional layers 

In addition to the architecture described above, another network with the first two 

convolutional layers being volumetric was tried out, which combines feature maps at a 

deeper depth than as considered in [17]. [17] only experiments with architectures that fuses 

feature maps after the zeroth (i.e. directly concatenating the input images) or first 

convolutional layer, both of which are rather shallow. Our explanation for their choosing 

such shallow layers is that their tasks are all concerning lips, whose features are much more 

constraint than general images as used in this project. Using feature maps after two 

convolutional layers is expected to encode higher level information, and may be more 

robust to spatial variations. 

The above architectures were used for both RPN and Fast RCNN. Figure x shows the loss 

curves for training Fast RCNN, where the unit for the x-axis is 200 (i.e. there are 90k iterations 

in total). 

 
Figure 13: (upper) regression and (lower) classification loss for Fast RCNN 
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It can be seen from the graphs that adding volumetric convolutions seem not to help 

increasing the performance. A possible explanation could be, though expected to be tolerant 

to moderate spatial translations, these networks may be harder to train, since the parameters 

of the combining spatial convolution layer need to be learned such that it can select the best 

features among the three frames, which would require encoding information regarding relative 

positions. However, motions of different directions would update the parameters differently. 

For example, an object moving to the left may update the parameters such that more weights 

are assigned to the right-hand side for the feature map from the previous frame and more 

weights to the left-hand side for the feature map from the next frame, while an object moving 

to the right would prefer exactly the opposite. Since the training examples contain motions in 

different directions which correspond to optical flows in different directions, the net effect 

over the entire training set may turn out to be isotropic, causing information from neighboring 

frames to be neglected. 

One possible way to solve this problem would be to take motion into consideration, such as 

to warp the feature maps using optical flows before combining them. This was proposed 

earlier but not able to be included in this project, therefore we decided to move it to future 

work. 

 

6.2.5 Propagating proposals 

In this modification, proposals from the previous and next frames are combined with the 

proposals generated in the current frame before forwarded into the classification layers. 

Proposals are also obtained from RPN, and optical flows are generated using Farneback’s 

algorithm [18] provided in OpenCV. Figure 14 gives an example of warping, where the middle 

image is warped from frame 0 following the optical flow from frame 0 to frame 1. 

   

Figure 14: (left) frame 0; (middle) warped frame; (right) frame 1 
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Figure 15: comparison of Fast RCNN training curves between the original settings (blue) and using propagated 
proposal (green). First row: regression losses; second row: classification losses. First column: statistics for entire 

90k iterations; second column: statistics for the last 30k iterations. 

Figure 15 shows the training loss for Fast RCNN, comparing the original version and the one 

using propagated proposals. The two methods are very similar overall, with the original 

version slightly better at regression and the propagated version having slightly more accurate 

classification results. A possible explanation could be some inaccurate optical flows may 

have caused the propagated proposals’ locations to be slightly off, however the disposition is 

relatively minor so that the propagation can still help recover some of the false negatives. 

 

6.2.6 Pending problem: RPN losses not converging 

For our torch implementation, after 60k training iterations, the classification loss dropped to 

around 0.3, which is comparable to 0.216 from the official Caffe implementation. However 

the regression loss were around 0.1, while the Caffe implementation’s was around 0.005. 
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This problem was first discovered when testing the trained RPN on images. We mistakenly 

thought the problem lied in the detection program, therefore after several unsuccessfully 

attempts to debug, we decided to import the detection algorithms used in the Caffe 

implementation in torch. After failing again to produce good results with the imported 

detection algorithms, we realized that the problem may lie in model training. 

Here are some aspects which were examined during debugging: 

k) Varied learning rates and batch sizes: e-3, e-4 and e-5 were used as the starting learning 

rate. e-3 seemed to be too large since it resulted in significant fluctuation in the error, and 

e-5 seemed too small. Starting from e-4, the learning rate was updated in different ways, 

including decreasing by a constant factor for every constant number of iterations (e.g. 

decreasing by 10 for every 10k iterations, or by 5 for every 5k iterations), or decreasing by 

10 when there was no significant change in loss for the last 5k iterations compared with 

the previous 5k iterations. 

l) Optimization algorithm: SGD was used as the optimization algorithm since it is considered 

to be more stable than RMSprop despite being possibly slower. 

m) Data preparation: the image database used in training was checked to ensure that 

annotation files and data files match with each other and that annotations are loaded 

correctly. There was a small dataset consisting of 300 images for test run.  

n) Pretrained models: we wondered whether not converging was due to not using a pretrained 

model.  

o) Anchors and training batches: scale and ratio jittering were used in generating anchors. 

Training batches were visualized and seemed correct. 

p) Training proposals: proposals generated by the network forward pass during training were 

visualized; as shown in Figure 9, proposals generated by later iterations seemed to be more 

accurate than those generated at the beginning of training. 
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6.3 GUI tools 

We have developed and used some GUI tools to help with visualizing the results and 

debugging. 

a) Displaying bounding boxes 

This tool was used to examine proposals generated by EdgeBox [10] and RPN [3]. For 

each frame, proposals with a confidence score higher than the threshold are displayed one 

at a time. Each proposed region is labeled with its coordinates followed by the confidence 

score. The threshold for confident scores can be specified through a input box, whose 

value is displayed at the upper left corner along with the proposal ID and the number of 

proposals after thresholding. “Prev” and “Next” iterate through the list of proposals, and 

“Jump To” allows selecting proposals by index. 

 

b) Visualizing tubelets 

This GUI allows to display all objects in the video, or tubelet boxes a specified object of 

interest. By default non-maximum suppression (NMS) is turned on, which means there is 

only the tubelet box with the highest score is displayed. NMS can be opted out using the 

“Switch” button, after which bounding boxes from all tubelets will be displayed for each 

frame. “Play” displays the selected tubelet(s) in the sequence of frames as a video. 

Figure 16: Control tabs and the interface for visualizing proposals 
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c) Visualizing detections 

This tool takes as input a txt file containing the detections and an image file (in .pgm 

format), and displays the gray-scale image with detections labeled with the class ID, 

confidence score as well as the four coordinates. 

 
Figure 18 

d) Debugging the network (installed package) 

We used package “graphviz” [19] as a debugging tool to visualize the networks 

(developed using “nngraph” [20]). Below is an illustration of how graphviz helped us 

locate the error to be in a self-defined module named “VarReshape”. 

Figure 17: Control tabs and the interface for tubelets. 
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Figure 19: graphviz marks the erroneous module in red 

 

7. Future Work 

Due to false estimations of the work load, limited programming skills, improper use of time 

and planning, the following proposals have not been able to be carried out in this project. 

7.1 Warping using optical flows when combining feature maps 

Networks described in section 7 directly use a spatial convolution layer to combine the 

concatenated feature maps, which may be hard to train due to different motions in the inputs. 

This motivated us to use optical flows to warp the feature maps from neighboring frame 

before combining them, such that the effect caused by motions could be counteracted.  

In addition to Farneback’s algorithm [18] as used in propagating proposals, we were also 

suggested to use FlowNet [21], as it can generate more accurate optical flows as well as 

relatively easy to get integrated into the network. It is worth noting that there is a recent work 

[22] sharing almost the same idea of flow-guided feature aggregation, which can be considered 
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as an evidence for the feasibility of introducing temporal information at the feature level. [22] 

uses ResNet [23] as the backbone structure and FlowNet [21] for generating optical flows, and 

has shown. [22] has presented some valuable techniques and details about training, which we 

will learn to adopt in the future. 

7.2 Temporal Loss 

Temporal loss was proposed earlier but not able to be carried out, so we decided to make it 

part of the future work. 

 

8. Conclusion 

This project aims at improving the mean Average Precision for object recognition with videos, 

where we attempted to improve the baseline framework T-CNN from both the single-frame 

detection framework and the post-processing steps. 

For post-processing steps, selected MGP has reduced the running time to around one third 

of the original, and can also help increasing the results by avoiding highly confident detections 

at inaccurate locations. Other methods to combine the propagated boxes such as weighted 

average and removing false positive clusters were tried out, however did not help increasing 

the performance. 

Regarding single-frame results, temporal information was introduced to the detection 

framework at the feature level and proposal level. These have not resulted in notable 

improvements, but the ideas seem promising if paired by better implementations and fine-

tuning. 

There is a pending problem to be solved, and there are some additional modifications that 

may help overcome some deficiencies in our methods, which we would like to experiment 

with in the future. 

  



39 

 

References 

1. Kang K, Li H, Yan J, Zeng X, Yang B, Xiao T, Zhang C, Wang Z, Wang R, Wang X, 

Ouyang W. T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos. 

arXiv:1604.02532v3, 2016 

2. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: A large-scale hierarchical image 

database. In CVPR, 2009.  

3. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal 

networks. In NIPS, 2015. 

4. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. 

Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 

2014. 

5. Ludwig T. Research Trends in High Performance Parallel Input/Output for Cluster Environments. 

Proceedings of the 4th International Scientific and Practical Conference on Programming. 

Kiev, Ukraine: National Academy of Sciences of Ukraine; 2004.  

6. myfavouritekk on GitHub. Available from: https://github.com/myfavouritekk/matutils 

7. Matlab Python Engine. Mathworks. Available from:  

http://www.mathworks.com/help/matlab/matlab-engine-for-

python.html?refresh=true&requestedDomain=www.mathworks.com 

8. Ouyang W, Wang X, Zeng X, Qiu S., Luo P. DeepID-Net: Deformable Deep Convolutional 

Neural Network for Object Detection. arXiv: 1412.5661v2. 2015. 

9. Yang B, Yan J, Lei Z, Li Z. CRAFT Objects from Images. In CVPR, 2016 

10. Zitnick C.L, Dollar P. EdgeBox: Locating Object Proposals from Edges. In ECCV, 2014. 

11. Dodge S, Karam L. Understanding How Image Quality Affects Deep Neural Networks. arXiv: 

1604.04004v2. 2016 

12. Zeiler M.D, Fergus R. Visualizing and Understanding Convolutional Networks. In 

arXiv:1311.2901 [cs.CV] 



40 

 

13. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 

In ICLR, 2015. 

14. Kalman filter (Wikipedia page): https://www.wikiwand.com/en/Kalman_filter 

15. Ruder M, Dosovitskiy A, Brox T. Artistic style transfer for videos. In arXiv: 1604.08610v2 

[cs.CV] 

16. Collobert R, Kavukcuoglu K, Farabet C. Torch7: A Matlab-like Environment for Machine 

Learning. BigLearn, NIPS Workshop 2011. 

17. Chung J, Zisserman A. Lip Reading in the Wild. arXiv:1611.05358 [cs.CV]. 

18. Farneback, Gunnar. Fast and accurate motion estimation using orientation tensors and parametric 

motion models. Pattern Recognition, 2000. Proceedings. 15th International Conference on. 

Vol. 1. IEEE, 2000.  

19. Gansner E, North S. An open graph visualization system and its applications to software engineering. 

Software – Practive and Experience, 2000, Vol.30, No.11. 

20. nngraph:  https://github.com/torch/nngraph  

21. Fischer P, Dosovitskiy A, Ilg E, Hausser P, Hazirbas C, Golkov V. FlowNet: Learning Optical 

Flow with Convolutional Networks. arXiv:1504.06852 [cs.CV]   



41 

 

Appendix – Results of NMS variants 

Weighted Average 

 
Average & 

window=7 & 
remove FP 

cluster 

Average & 
window 
size= 7 

Average & 
window 
size = 5 

Average & 
remove FP 

clusters (win=5) 

Average & remove 
FP clusters  & 
remove parts 

(win=5) 

Airplane 53.7  48.1  52.6  57.4  58.0  
Antelope 13.8  11.0  12.9  16.1  16.3  
Bear 16.1  14.6  15.5  17.0  18.2  
Bicycle 26.5  22.0  24.8  29.8  31.0  
Bird 8.1  6.6  7.5  9.9  10.4  
Bus 22.2  19.6  21.2  24.5  27.2  
Car 16.8  12.4  15.5  21.6  22.2  
Cattle 19.9  17.7  19.4  22.2  23.0  
Dog 8.6  7.4  8.3  9.8  10.3  
Domestic cat 3.6  3.3  3.6  4.0  4.2  
Elephant 28.1  25.3  27.8  30.3  29.5  
Fox 25.3  20.9  24.3  29.1  29.4  
Giant panda 46.8  43.8  46.3  49.5  49.0  
Hamster 7.7  6.5  7.6  9.0  9.4  
Horse 28.0  21.4  24.8  31.0  31.7  
Lion 0.0  0.1  0.1  0.1  0.1  
Lizard 2.5  1.9  2.3  3.4  3.5  
Monkey 6.2  4.7  5.6  7.7  7.9  
Motorcycle 27.2  20.0  26.1  37.2  39.1  
Rabbit 1.5  1.3  1.5  1.7  1.7  
Red panda 3.8  3.6  3.9  4.3  4.4  
Sheep 12.0  8.7  11.1  15.3  11.7  
Snake 1.8  1.7  1.9  2.1  2.4  
Squirrel 1.0  1.0  1.0  1.1  1.1  
Tiger 20.2  15.2  18.4  24.9  26.1  
train 18.0  14.5  17.3  22.0  25.1  
turtle 8.5  6.5  8.0  10.3  10.6  
watercraft 28.7  24.7  27.1  32.1  33.8  
whale 7.6  4.6  6.2  11.6  12.6  
zebra 59.8  58.0  59.8  61.1  61.0  
Mean 17.5  14.9  16.7  19.9  20.4   

Average & 
remove FP 
cluster & 

window=7 

Average & 
window 
size= 7 

Average & 
window 
size = 5 

Average & 
remove FP 

clusters (win=5) 

Average & remove 
FP clusters  & 
remove parts 

(win=5) 
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NMS 

Weights Plain 1-0.1*offset Gaussian 
Sigma = 1 

Gaussian 
Sigma = 2 

Airplane 62.6  65.3  65.3  65.5  
Antelope 18.8  20.4  20.5  20.5  
Bear 19.0  19.9  20.1  20.1  
Bicycle 37.9  39.5  39.2  39.3  
Bird 16.2  16.7  16.6  16.7  
Bus 27.9  29.5  29.8  29.8  
Car 31.1  33.5  33.6  33.6  
Cattle 26.9  27.5  27.6  27.6  
Dog 12.1  13.0  13.1  13.1  
Domestic cat 5.3  5.7  5.7  5.7  
Elephant 34.6  34.6  34.3  34.4  
Fox 33.6  34.1  34.0  34.0  
Giant panda 53.5  53.8  54.0  54.1  
Hamster 10.6  11.0  11.1  11.1  
Horse 40.9  42.4  41.9  42.0  
Lion 0.0  0.0  0.0  0.0  
Lizard 5.9  6.5  6.6  6.6  
Monkey 13.4  13.5  13.3  13.3  
Motorcycle 55.4  57.8  57.6  57.7  
Rabbit 1.9  2.0  2.0  2.0  
Red panda 4.8  5.3  5.5  5.5  
Sheep 25.2  26.1  26.0  26.0  
Snake 4.0  4.2  4.3  4.3  
Squirrel 1.7  1.9  1.9  1.9  
Tiger 33.0  34.2  34.1  34.1  
train 33.7  34.6  34.5  34.6  
turtle 12.2  13.7  13.9  13.9  
watercraft 37.4  38.2  37.8  37.9  
whale 23.2  25.5  25.5  25.5  
zebra 64.6  65.5  65.6  65.6  
Mean 24.9  25.9  25.8  25.9  

 

 


