Guiding machine learning design
 with insights from simple testbeds

Bingbin Liu

Carnegie Mellon University

Jordan
T. Ash

Surbhi
Goel

Daniel
Hsu

Akshay
Krishnamurthy

Yuchen
Li

Pradeep Ravikumar

Andrej
Risteski

Elan
Rosenfeld

How to improve large-scale machine learning?

Hi there! Let's now do some binary addition, i.e. addition in base 2. Do you know how to do this?

S(S) Yes, I can help you with binary addition! Binary numbers use base 2, which means there are only two digits: 0 and 1 . To add

errors

Trial and Error?

(Too many tuning knobs!)

\$63M

What is a principled way to make progress?

Theory?

Understanding machine learning methods

This talk

With proper simplification,

theory can inform practical machine learning methods.

1. Classic theory toolkits can be applied to understand modern ML. Understand task design and solutions.
2. Theory-inspired lens can provide practical insights.

As diagnosis tools, improving performance.

Theory toolkits for understanding modern machine learning

```
Understand
    the task
    [LHRR22]
    ->Tensor decomposition [Kruskal 1977]
```

Understand the solution \rightarrow Formalize with finite automata.
[LAGKZ23a]
\rightarrow Circuits, (semi)groups [Krohn \& Rhodes 1965]

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

Model

"Ithaca takes its name [MASK] the Greek island of Ithaca in Homer's Odyssey."

Mask too little: easy to infer.

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

Mask too much: expensive, or even impossible.

Task design: how much masking is sufficient?

for recovering HMM parameters
15% ? [Devlin et al. 18]

[LDRR 22]: with Hidden Markov Model data,

- Masked predictor \rightarrow tensors;
- Tensor decomposition \rightarrow HMM parameters.
[Wettig et al. 22]

Masked Prediction with HMM

Data: Hidden Markov Model (HMM): latents $\left\{h_{t}\right\} \rightarrow$ observables $\left\{x_{t}\right\}$.

- Discrete latents $\left\{h_{t}\right\}: P\left(h_{t+1} \mid h_{t}\right) \leftarrow T$ (transition matrix)
- Discrete observables $\left\{x_{t}\right\}: P\left(x_{t} \mid h_{t}\right) \leftarrow O$ (emission matrix)

Masked prediction task: e.g. $x_{2}, x_{3} \mid x_{1} \ldots$... $u p$ to 3 tokens

Parameter Identifiability

An identifiable task: parameters can be recovered* from the predictor f.
*Up to permutation: $O=\tilde{O} \Pi, T=\Pi^{\top} \tilde{T} \Pi$ for some permutation Π.

- Predicting with the squared loss.
- Optimal predictor, e.g. $f^{(2,3 \mid 1)}(x)=\mathbb{E}\left[x_{2} \otimes x_{3} \mid x_{1}=x\right]$.

Why predicting more helps with identifiability

- Pairwise $\left(x_{t}, \mid x_{t}\right)$: not identifiable
- Triplet $\left(x_{t_{2}}, x_{t_{3}} \mid x_{t_{1}}\right)$
(Thm) $\exists \tilde{O}, O$ s.t. $\tilde{O} \neq 0$, but produce the same pairwise predictors.

$$
\text { (i.e. } \left.x_{2}\left|x_{1}, x_{1}\right| x_{2}, x_{3}\left|x_{1}, x_{1}\right| x_{3}\right)
$$

Intuition: matrix (2-tensor) factorization is not unique.

- Matching $f^{*}\left(x_{2} \mid x_{1}\right) \rightarrow$ matching $O T O^{\top}=\tilde{O} \tilde{T} \tilde{O}^{\top}$.
- $\tilde{O}:=O R, \tilde{T}:=R^{\top} T R$ for an orthogonal R (\sim rotation of a small angle).

Why predicting more helps with identifiability

- Pairwise $\left(x_{t} \mid x_{t}\right)$: not identifiable
- Triplet $\left(x_{t_{2}}, x_{t_{3}} \mid x_{t_{1}}\right)$: identifiable
(Thm) O, T are identifiable from the task $x_{t_{2}} \otimes x_{t_{3}} \mid x_{t_{1}}$, for t_{1}, t_{2}, t_{3} being any permutation of $\{1,2,3\}$.

Intuition: (3-)tensor decomposition is unique.

- 3-tensor $=$ input \otimes predictor output:

$x_{2}, x_{3} \mid x_{1}$
$W:=\sum_{x_{1}} x_{1} \otimes \mathbb{E}\left[x_{2} \otimes x_{3} \mid x_{1}\right]$
*prior work: $3^{\text {rd }}$ order moments $\mathbb{E}\left[x_{1} \otimes x_{2} \otimes x_{3}\right]$
$\rightarrow W=\sum_{i} \cdots \otimes O_{i} \otimes(O T)_{i} \quad \ldots$ Kruskal's theorem \rightarrow unique $\left\{O_{i}\right\},\left\{(O T)_{i}\right\}$.
$\left(x_{2} \perp x_{3} \mid h_{2}\right) \quad[K r u s k a l$ 1977]

Theory toolkits for understanding modern machine learning

```
Understand
    Masking ratio in masked prediction [Devlin et al. 2018]?
    the task }->\mathrm{ Recovering parameters in hidden Markov model
    [LHRR22] }->\mathrm{ Tensor decomposition [Kruskal 1977]
```


Theory toolkits for understanding modern machine learning

Understand

the task [LHRR22]

Masking ratio in masked prediction
\rightarrow Recovering parameters in hidden Markov model
\rightarrow Tensor decomposition

Understand the solution
\rightarrow How Transformers learn finite automata?
[LAGKZ23a]
\rightarrow Circuits, (semi)groups [Krohn \& Rhodes 1965]

Transformers for "reasoning"

Reasoning is a form of computation.

Goal: classify solutions for learning finite automata.
Prior work: parity (Hanh 20), bounded Dyck (Yao et al. 22),

Sequential reasoning via automata

```
A}=(Q,\Sigma,\delta
q}=\delta(\mp@subsup{q}{t-1}{},\mp@subsup{\sigma}{t}{}
states inputs transitions
(Q is finite)
```

```
parity counter
Q = {even,odd}
\Sigma={0,1}
```


1-bit memory unit
$Q=\{\boldsymbol{\omega}\rangle$,
$\Sigma=\left\{\sigma_{\phi}, \sigma_{\star}, \perp\right\}$
(will reappear later)
Task: simulating the dynamics of \mathcal{A}.

Task: Simulating automata

Simulating \mathcal{A} : learn a seq2seq function for sequence length T.

The Transformer layer

Computation parallel across positions. attention scores $\left(\sum_{j} \alpha_{i j}=1\right)$

$$
l^{\text {th }} \text { layer, position } i \in[T]: x_{i}^{(l)}=\phi\left(\sum_{j \leq i} \alpha_{i j}^{(l)} x_{j}^{(l-1)}\right)
$$

The Transformer layer

Computation parallel across positions.
attention scores: $\sum_{j} \alpha_{i j}=1$

$$
l^{\text {th }} \text { layer, position } i \in[T]: x_{i}^{(l)}=\phi\left(\sum_{j \leq i} \alpha_{i j}^{(l)} x_{j}^{(l-1)}\right)
$$

1. uniform attention $/ \overrightarrow{\boldsymbol{\alpha}_{i}}=\left[\frac{1}{\mathrm{~T}}, \frac{1}{\mathrm{~T}}, \cdots, \frac{1}{T}\right]$

e.g. average, sum.
2. sparse attention $/ \overrightarrow{\alpha_{i}}=[0, \cdots 1,0, \cdots]$

e.g. selection.

Architecture choices

Recurrent Neural Nets (RNNs)
sequential across positions
Natural for $q_{t}=\delta\left(q_{t-1}, \sigma_{t}\right)$

T positions

Transformer

parallel across positions
sequential across layers

L (\#layers) << T (\# positions)

~ width-T, depth- L circuit, but with weight sharing.

A parallel model for a sequential task?

Different ways to simulate automata

$$
\mathcal{A}=(Q, \Sigma, \delta)
$$

Simulating $=$ mapping from $\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{T}\right) \subset \Sigma^{T}$ to $\left(q_{1}, q_{2}, \cdots, q_{T}\right) \subset Q^{T}$.
e.g. parity $\stackrel{\text { even }}{\sim}_{\stackrel{0}{\sim}}^{\stackrel{0}{\sim}}$

Iterative solution

"RNN solutions"

```
Shortcut
o(T) \# sequential steps
```

Parallel solution

"Transformer solutions"

Solutions of Reasoning

$$
\mathcal{A}=(Q, \Sigma, \delta), \quad q_{t}=\delta\left(q_{t-1}, \sigma_{t}\right)
$$

\# steps = \# sequential computation steps

Sequential solutions
(\# steps = T)
By δ 's definition; natural for RNNs

iterative state emulation

Shortcuts (\#steps = o(T))

Transformer can simulate \mathcal{A} with:
(Thm 1) $\boldsymbol{O}(\log \boldsymbol{T})$ layers
Task structure?
Why Transformer?
(Thm 2) $\widetilde{\boldsymbol{O}}\left(|\boldsymbol{Q}|^{2}\right)$ layers

$O(\log T)$ steps

$$
\begin{gathered}
\mathcal{A}=(Q, \Sigma, \delta) \\
q_{t}=\delta\left(q_{t-1}, \sigma_{t}\right)
\end{gathered}
$$

Goal: compute $q_{t}=\left(\delta\left(\cdot, \sigma_{t}\right) \circ \cdots \circ \delta\left(\cdot, \sigma_{1}\right)\right)\left(q_{0}\right), t \in[T]$.

$$
\delta(\cdot, \sigma): Q \rightarrow Q
$$

function \longleftrightarrow matrix
composition \longleftrightarrow multiplication

$Q=\{$ even, odd $\}$
$\Sigma=\{0,1\}$

$$
\begin{aligned}
& \delta(\cdot, 0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \delta(\cdot, 1)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

parity counter
associativity

How to use $o(\log T)$ layers?

$$
q_{t}=\left(\delta\left(\cdot, \sigma_{t}\right) \circ \cdots \circ \delta\left(\cdot, \sigma_{1}\right)\right)\left(q_{0}\right)
$$

We already have positive results.

- Parity: only need to count \#1s.

$$
q_{t}=\left(\sum_{\tau \leq t} \sigma_{\tau}\right) \bmod 2
$$

$$
f \circ g=g \circ f
$$

Counting works for commutative function composition: O (1) layers.

Decomposition: car on a circle

$$
q_{0}=(0), \sigma_{1: T}=\text { DDDUDDUUD } \rightarrow q_{T} \text { ? }
$$

- Direction = parity (sum) of U. (parity: $\{1,-1\} \leftrightarrow\{0,1\})$
- Position $=$ signed sum $\bmod 4: \operatorname{sign}=$ parity of $U . \quad \int^{O(1)}$ layer each

$$
\begin{array}{rllllllllll}
q_{0} & D & D & D & U & D & D & U & U & D \\
\text { Parity: } & 1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1
\end{array} \rightarrow
$$

Decomposition: general

Transformation group: $\mathcal{T}(\mathcal{A}):=\{\delta(\cdot, \sigma): \sigma \in \Sigma\}$ under composition.

Set with a binary operator

- Associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- Identity: $e \cdot a=a \cdot e=a$

- Inverse: $a \cdot b=b \cdot a=e$

Decomposition: general

Transformation group: $\mathcal{T}(\mathcal{A}):=\{\delta(\cdot, \sigma): \sigma \in \Sigma\}$ under composition.
parity counter
$(\bmod 2) \quad Q=\{$ even, odd $\}$
$\Sigma=\{0,1\}$
~ 2 (prime factor)

decomposition \approx prime factorization
e.g. the car example $C_{4} \rtimes C_{2}$.

Decomposing $\mathcal{T}(\mathcal{A})$

"Prime factorization" for groups:

$$
\begin{aligned}
&(\mathcal{T}(\mathcal{A})=) G=H_{n} \triangleright \cdots \cdots H_{2} \triangleright H_{1} \text { (Jordan \& Hölder) } \\
& n=O(\log |G|) H_{i+1} / H_{i} \text { are simple groups } \\
& \sim \text { prime numbers }
\end{aligned}
$$

Solvable G can be simulated with $O(\log |G|)$ layers.

Decomposition $\mathcal{T}(\mathcal{A})$
semigroup
Transformation group: $\mathcal{T}(\mathcal{A}):=\{\delta(\cdot, \sigma): \sigma \in \Sigma\}$ under composition.

Invertible?
1-bit memory unit
$Q=\{\boldsymbol{\omega}, \boldsymbol{*}\}$
$\Sigma=\left\{\sigma_{\boldsymbol{\phi}}, \sigma_{\boldsymbol{\psi}}, \perp\right\}$

$$
\delta\left(\cdot, \sigma_{\alpha}\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \quad . . \text { singular }
$$

Decomposition $\mathcal{T}(\mathcal{A})$

semigroup
Transformation group: $\mathcal{T}(\mathcal{A}):=\{\delta(\cdot, \sigma): \sigma \in \Sigma\}$ under composition.
$\mathcal{T}(\mathcal{A})$ is a group: factorized into groups by Jordan \& Hölder.
$\mathcal{T}(\mathcal{A})$ is a semigroup: factorized into permutation-reset automata by Krohn-Rhodes.

$$
\text { Def: } \delta(\cdot, \sigma) \text { is a permutation (forming } G \text {) or a constant. }
$$

A permutation-reset automaton can be simulated with $O(\log |G|)$ layers.

$$
\leq|Q| \quad \mathcal{T}(\mathcal{A}): \tilde{O}\left(|Q|^{2}\right) \quad O(|Q| \log |Q|)
$$

$\tilde{O}\left(|Q|^{2}\right)$ steps decomposition with Transformers

Krohn-Rhodes: solvable \mathcal{A} decomposes into permutations and resets.

Each representable by 1 Transformer layer

Solutions of Reasoning

$$
\mathcal{A}=(Q, \Sigma, \delta), \quad q_{t}=\delta\left(q_{t-1}, \sigma_{t}\right)
$$

\# steps = \# sequential computation steps

Sequential solutions
\#steps $=T$,
by δ or RNNs.

iterative state emulation

Shortcuts (\#steps $=o(T))$

Transformer can simulate \mathcal{A} with:
(Thm 1) $\boldsymbol{O}(\log \boldsymbol{T})$ layers.
(Thm 2) $\widetilde{\boldsymbol{O}}\left(|\boldsymbol{Q}|^{2}\right)$ layers
associativity
tree: divide and conquer
algebraic structure
Krohn-Rhodes decomposition
(solvable \mathcal{A} only)

Remarks

1. Can we improve $O(\log T)$ in general? Likely not.

- Constant-depth Transformer is in TCO [Merrill et al. 21].
- Some automata are NC1 complete (e.g. S_{5}).
$\rightarrow \Omega(\log T)$ unless TCO $=$ NC1.

2. What is special about Transformers?

- Parameter sharing: T times more efficient than directly "compiling" a circuit.
- Parallelism: for a cyclic group $C_{2^{k}}, 1$ Transformer layer vs k steps in Jorden-Holder.
(for any abelian group)

Can theoretical insights lead to practical benefits?

1. Diagnosing trained Transformers [LAGKZ23b]
2. Improving performance [WLLR23]

1. Diagnosing trained Transformers

"Is Transformer always better than RNNs?"

Sanity check: can shortcuts be found through finite-sample training?

- Good in-distribution accuracy. out-of-distribution?
- Deeper factorization \rightarrow more layers.
- Rows ordered by \#factorization steps.

Transformer depth $\boldsymbol{L}(T=100)$											
	1	2	3	4	5	-	7	8	12	16	
Dyck	99.3	100	100	100	100	100	100	100	100	100	
Grid,	92.2	100	100	100	100	100	100	100	100	100	
c_{2}		99.8	99.9	100	100	99.5	100	99.7	100	100	
c_{3}	54.6	94.6	96.7	99.4	100	100	99.8	100	100	100	
C_{2}^{3}	55.0		99.9	97.9	100	99.8	98.2	99.9	95.9	80.6	
D_{6}	25.4	27.2	47.4		100	100	100	100	100	100	
D_{8}	45.6	98.0	100	100	100	100	100	100	100	100	
Q_{8}	31.6	\| 49.2	[59.6	60.4		99.3	100	100	100	100	
A_{5}	12.5	23.1	32.5	46.7		98.8	100	100	100	100	
5_{5}	7.9	11.8	14.6	19.7	26.0	28.4	32.8	\| 51.8	7.2	99.9	

1. Diagnosing trained Transformers

"Is Transformer always better than RNNs?"

Out-of-distribution: train distr \neq test distr.

- train: $p(1)=0.5$
- test: varying $p(1)$.

Parallel shortcut: $q_{t}=\left(\sum_{i \in[t]} \sigma_{i}\right) \bmod 2$

- mod: fit by a piecewise-linear network.
\rightarrow fail at unseen $\left(\sum_{i \in[t]} \sigma_{i}\right)$.

Transformer fails to solve parity.

1. Diagnosing trained Transformers

"Is Transformer always better than RNNs?"

Out-of-distribution: train distr \neq test distr.

Finite-sample training: Transformer < RNN.

- Due to inherent limitations of attention.
- Cannot be fixed by "scaling" (model/data size \uparrow).

[LAGKZ23b]

2. Improving performance

Hierarchical structure

Process: stack or 2-layer Transformer. [Yao et al. 20]
[WLLR 23]: all 2-layer Transformers solving Dyck need to satisfy a balanced condition.
~ a Transformer's version of the pumping lemma. (informal: $x y z \in L \rightarrow x y^{*} z \in L$. .)

Can theoretical insights lead to practical benefits?

1. Diagnosing trained transformers

2. Improving performance

Can practical insights inform theory?

Practice informs theory

1d gridworld: $Q=\{1,2,3,4\}, \Sigma=\{L, R\}$.

- State matters: $\operatorname{LLRR} \neq \operatorname{LRLR}$ at state 1 , but LLRR $=\operatorname{LRLR}$ at state 3 .

How to determine the states in parallel?

Practice informs theory

Hint from a trained Transformer: boundary detection.

Why boundaries? No boundary \rightarrow prefix sum.
\rightarrow 3-layer solution (Krohn-Rhodes: $\widetilde{O}\left(|Q|^{2}\right)$)
"mechanistic interpretability" extracting algorithms from trained models

Previous positions

With proper simplification,

theory can inform practical machine learning methods.

1. Classic theory toolkits for understanding modern ML.

Understand task design and solutions.

Many other connections!

- Circuit complexity [Merrill et al. 21]
- Communication complexity [Sanford et al. 23]

With proper simplification,

theory can inform practical machine learning methods.
2. Theory-inspired lens can provide practical insights.

As diagnosis tools, improving performance.

... and vice versa!

Future direction: efficient training

[LRRR 22]: why an objective fails to reach optimality in practice?
\rightarrow A simple Gaussian setup.
\rightarrow Provable fix with practical gain.
Simple change: $O(\exp (R)) \rightarrow O\left(R^{2}\right)$.

Beating the "scaling laws".

- Knowledge distillation.
- Effective use of data, curriculum.

Bridging synthetic \& practical setups.

- Understanding structures in data.
- Behavior changes across scales.

With the proper simplification, theory can inform practical machine learning methods.

1. Classic theory toolkits for understanding modern ML.

Understand task design and solutions.
2. Theory-inspired lens can provide practical insights.

As diagnosis tools, improving performance.
... and vice versa.
Discovering cool problems and solutions.

