Guiding machine learning design with insights from simple testbeds

Bingbin Liu

Carnegie Mellon University

Surbhi

Goel

Jordan T. Ash

Daniel

Hsu

Pradeep

Ravikumar

Andrej

Risteski

Elan

Rosenfeld

Kaiyue

Wen

Cyril Zhang

How to improve large-scale machine learning?

Hi there! Let's now do some binary addition, i.e. addition in base 2. Do you know how to do this?

Yes, I can help you with binary addition! Binary numbers use base 2, which means there are only two digits: 0 and 1. To add

Understanding machine learning methods

This talk

With proper simplification,

theory can inform practical machine learning methods.

1. Classic theory toolkits can be applied to understand modern ML. Understand task design and solutions.

2. Theory-inspired lens can provide practical insights.

As diagnosis tools, improving performance.

Theory toolkits for understanding modern machine learning

Understand	Masking ratio in masked prediction [Devlin et al. 2018]?				
the task	\rightarrow Formalize with hidden Markov model				
[LHRR22]	\rightarrow Tensor decomposition [<i>Kruskal 1977</i>]				

Understand	How Transformers [Vaswani et al. 2017] "reason"?				
the solution	\rightarrow Formalize with finite automata.				
[LAGKZ23a]	→ Circuits, (semi)groups [Krohn & Rhodes 1965]				

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

Mask too much: expensive, or even impossible.

Task design: how much masking is sufficient?

for recovering HMM parameters

15%? [Devlin et al. 18]

[LDRR 22]: with Hidden Markov Model data,

- Masked predictor \rightarrow tensors;
- Tensor decomposition \rightarrow HMM parameters.

Masked Prediction with HMM

Data: Hidden Markov Model (HMM): latents $\{h_t\} \rightarrow$ observables $\{x_t\}$.

- Discrete latents $\{h_t\}$: $P(h_{t+1}|h_t) \leftarrow T$ (transition matrix)
- Discrete observables $\{x_t\}$: $P(x_t|h_t) \leftarrow O$ (emission matrix)

Masked prediction task: e.g. $x_2, x_3 | x_1 \dots *$ up to 3 tokens

Parameter Identifiability

An identifiable task: parameters can be recovered* from the predictor f.

*Up to permutation: $O = \tilde{O}\Pi, T = \Pi^{\top}\tilde{T}\Pi$ for some permutation Π .

- Predicting with the squared loss.
- Optimal predictor, e.g. $f^{(2,3|1)}(x) = \mathbb{E}[x_2 \otimes x_3 | x_1 = x]$.

Why predicting more helps with identifiability

• Pairwise $(x_{t}, | x_t)$: *not identifiable*

• Triplet $(x_{t_2}, x_{t_3} | x_{t_1})$

(Thm) $\exists \tilde{O}, O$ s.t. $\tilde{O} \neq O$, but produce the same pairwise predictors. (i.e. $x_2 | x_1, x_1 | x_2, x_3 | x_1, x_1 | x_3$)

Intuition: matrix (2-tensor) factorization is not unique.

- Matching $f^*(x_2|x_1) \rightarrow \text{matching } OTO^{\top} = \tilde{O}\tilde{T}\tilde{O}^{\top}$.
- $\tilde{O} := OR, \tilde{T} := R^{T}TR$ for an orthogonal R (~rotation of a small angle).

Why predicting more helps with identifiability

• Pairwise $(x_{t'}|x_t)$: not identifiable

• Triplet $(x_{t_2}, x_{t_3} | x_{t_1})$: *identifiable*

(Thm) O, T are identifiable from the task $x_{t_2} \otimes x_{t_3} | x_{t_1}$, for t_1, t_2, t_3 being any permutation of {1,2,3}.

Intuition: (3-)tensor decomposition is unique.

• 3-tensor = input \otimes predictor output:

 $W \coloneqq \sum_{x_1} x_1 \otimes \mathbb{E}[x_2 \otimes x_3 | x_1]$

*prior work: 3rd order moments $\mathbb{E}[x_1 \otimes x_2 \otimes x_3]$

 $\rightarrow W = \sum_{i} \dots \bigotimes O_{i} \bigotimes (OT)_{i} \quad \dots \text{ Kruskal's theorem} \rightarrow unique \{O_{i}\}, \{(OT)_{i}\}.$ $(x_{2} \perp x_{3} \mid h_{2}) \qquad [Kruskal 1977]$

Theory toolkits for understanding modern machine learning

Understand the task	Masking ratio in masked prediction [Devlin et al. 2018]?				
	ightarrow Recovering parameters in hidden Markov model				
[LHRR22]	\rightarrow Tensor decomposition [<i>Kruskal 1977</i>]				

Understand	How Transformers [Vaswani et al. 2017] "reason"?
the solution	\rightarrow How Transformers learn finite automata?
[LAGKZ23a]	→ Circuits, (semi)groups [Krohn & Rhodes 1965]

Theory toolkits for understanding modern machine learning

Understand	Masking ratio in masked prediction [Devlin et al. 2018]
the task	ightarrow Recovering parameters in hidden Markov model
[LHRR22]	\rightarrow Tensor decomposition [<i>Kruskal 1977</i>]

Understand	How Transformers [Vaswani et al. 2017] "reason"?					
the solution	\rightarrow How Transformers learn finite automata?					
[LAGKZ23a]	→ Circuits, (semi)groups [Krohn & Rhodes 1965]					

Transformers for "reasoning"

Reasoning is a form of computation.

Goal: classify solutions for learning finite automata.

Prior work: parity (Hanh 20), bounded Dyck (Yao et al. 22),

Sequential reasoning via automata

Task: Simulating automata

Simulating \mathcal{A} : learn a *seq2seq function* for sequence length T.

The Transformer layer

Computation *parallel* across positions.

attention scores
$$(\sum_{j} \alpha_{ij} = 1)$$

 l^{th} layer, position $i \in [T]: x_i^{(l)} = \phi(\sum_{j \le i} \alpha_{ij}^{(l)} x_j^{(l-1)})$

Parameters shared across positions.

- ϕ : computed per-position.
- $\alpha_{ij} \propto \exp(\langle W_Q x_i, W_K x_j \rangle)$: the only source of interaction.

The Transformer layer

Computation *parallel* across positions.

attention scores:
$$\sum_{j} \alpha_{ij} = 1$$

 l^{th} layer, position $i \in [T]$: $x_i^{(l)} = \phi(\sum_{j \le i} \alpha_{ij}^{(l)} x_j^{(l-1)})$
parameters

1. uniform attention $/\overrightarrow{\alpha_i} = \begin{bmatrix} \frac{1}{T}, \frac{1}{T}, \cdots, \frac{1}{T} \end{bmatrix}$

e.g. average, sum.

2. sparse attention / $\overrightarrow{\alpha_i} = [0, \cdots 1, 0, \cdots]$

Architecture choices

Recurrent Neural Nets (RNNs)

sequential across positions Natural for $q_t = \delta(q_{t-1}, \sigma_t)$

L (#layers) $\ll T$ (# positions)

Transformer

parallel across positions sequential across layers

 \sim width-*T*, depth-*L* circuit, but with weight sharing.

A parallel model for a sequential task?

$$Q = \{ even, odd \} \qquad Q = \{ \clubsuit, \blacklozenge \}$$

$$\Sigma = \{ 0, 1 \} \qquad \Sigma = \{ \sigma_{\clubsuit}, \sigma_{\diamondsuit}, \bot \}$$

(a) (b)

Different ways to simulate automata

Simulating = mapping from $(\sigma_1, \sigma_2, \dots, \sigma_T) \subset \Sigma^T$ to $(q_1, q_2, \dots, q_T) \subset Q^T$.

Iterative solution

Shortcut

o(T) # sequential steps

Parallel solution

"Transformer solutions"

Solutions of Reasoning

steps = # sequential computation steps

$$\mathcal{A} = (Q, \Sigma, \delta), \quad q_t = \delta(q_{t-1}, \sigma_t).$$

$$\begin{aligned} \mathcal{A} &= (Q, \Sigma, \delta), \\ q_t &= \delta(q_{t-1}, \sigma_t). \end{aligned}$$

Goal: compute
$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1))(q_0), t \in [T].$$

 $\delta(\cdot, \sigma): Q \to Q$

How to use $o(\log T)$ layers?

$$q_t = \left(\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)\right)(q_0)$$

We already have positive results.

• Parity: only need to count #1s.

 $f \circ g = g \circ f$

Counting works for commutative function composition: O(1) layers.

f ∘ g ≠ g ∘ f How about *non-commutative* compositions?

Decomposition

Decomposition: car on a circle

$$Q = \{ \implies \iff \{0,1,2,3\}, \Sigma = \{D(drive), U(U-turn)\}.$$

$$q_0 = (\clubsuit, 0), \ \sigma_{1:T} = DDDUDDUUD \rightarrow q_T?$$

- Direction = parity (sum) of U. (parity: $\{1, -1\} \leftrightarrow \{0, 1\}$)
- Position = signed sum mod 4 : sign = parity of U.

 $q_0 \quad D \quad D \quad U \quad D \quad D \quad U \quad U \quad D$ Parity: 1 1 1 1 -1 -1 -1 1 -1 -1 $\rightarrow \Rightarrow$ Signed sum: 0 1 1 1 0 -1 -1 0 0 -1 $\rightarrow 0$

27

Decomposition: general

Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

Set with a binary operator

• Associativity:
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

• Identity:
$$e \cdot a = a \cdot e = a$$

• Inverse:
$$a \cdot b = b \cdot a = e$$

Decomposition: general

Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

Decomposing $\mathcal{T}(\mathcal{A})$

Group: associative + invertible

"Prime factorization" for groups:

$$\begin{aligned} \mathcal{T}(\mathcal{A}) = & G = H_n \vartriangleright \cdots \vartriangleright H_2 \vartriangleright H_1 \text{ (Jordan \& Hölder)} \\ & \swarrow & \swarrow \\ n = O(\log |G|) & H_{i+1}/H_i \text{ are simple groups} \\ & \sim \text{ prime numbers} \\ & \rightarrow & \text{ If abelian} \rightarrow & \text{ cyclic} \rightarrow 1 \text{ Transformer layer} \end{aligned}$$

G is solvable if all $\{H_{i+1}/H_i\}$ are abelian.

Solvable G can be simulated with $O(\log|G|)$ layers.

Decomposition $\mathcal{T}(\mathcal{A})$

Semigroup:: associative + invertible

semigroup Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

Decomposition $\mathcal{T}(\mathcal{A})$

semigroup Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

 $\mathcal{T}(\mathcal{A})$ is a group: factorized into groups by Jordan & Hölder.

 $\mathcal{T}(\mathcal{A})$ is a semigroup: factorized into *permutation-reset automata* by **Krohn-Rhodes**. Def: $\delta(\cdot, \sigma)$ is a permutation (forming G) or a constant.

A permutation-reset automaton can be simulated with $O(\log|G|)$ layers. $\leq |Q| \qquad \mathcal{T}(\mathcal{A}): \tilde{O}(|Q|^2) \qquad O(|Q|\log|Q|)$

$\tilde{O}(|Q|^2)$ steps decomposition with Transformers

Krohn-Rhodes: solvable \mathcal{A} decomposes into permutations and resets.

Each representable by 1 Transformer layer

Solutions of Reasoning

steps = # sequential computation steps

$$\mathcal{A} = (Q, \Sigma, \delta), \quad q_t = \delta(q_{t-1}, \sigma_t).$$

Remarks

All \mathcal{A} : $O(\log T)$ layers.

Solvable $\mathcal{A}:\widetilde{\boldsymbol{O}}\big(|\boldsymbol{Q}|^2\big)$ layers.

1. Can we improve $O(\log T)$ in general? Likely not.

- Constant-depth Transformer is in TCO [Merrill et al. 21].
- Some automata are NC1 complete (e.g. S_5).
- $\rightarrow \Omega(\log T)$ unless TCO = NC1.
- 2. What is special about Transformers?
 - **Parameter sharing**: *T* times more efficient than directly "compiling" a circuit.
 - Parallelism: for a cyclic group C_{2^k} , 1 Transformer layer vs k steps in Jorden-Holder. (for any abelian group)

Can theoretical insights lead to practical benefits?

1. Diagnosing trained Transformers [LAGKZ23b]

2. Improving performance [WLLR23]

1. Diagnosing trained Transformers

"Is Transformer always better than RNNs?"

Sanity check: *can shortcuts be found* through finite-sample training?

- Good in-distribution accuracy. *out-of-distribution?*
- Deeper factorization \rightarrow more layers.
 - Rows ordered by #factorization steps.

Transformer depth L (T=100)

	1	2	3	4	5	. 6	7	8	12	16	
Dyck	99.3	100	100	100	100	100	100	100	100	100	
Grid ₉	92.2	100	100	100	100	100	100	100	100	100	
<i>C</i> ₂		99.8	99.9	100	100	99.5	100	99.7	100	100	
<i>C</i> ₃	54.6	94.6	96.7	99.4	100	100	99.8	100	100	100	au
C_{2}^{3}	65.0		99.9	97.9	100	99.8	98.2	99.9	95.9	80.6	automaton
D_6	25.4	27.2	47.4		100	100	100	100	100	100	lato
D_8	45.6	98.0	100	100	100	100	100	100	100	100	Ъ
Q_8	31.6	49.2	59.6	60.4	73.5	99.3	100	100	100	100	
A ₅	12.5	23.1	32.5	46.7	71.2	98.8	100	100	100	100	
S_5	7.9	11.8	14.6	19.7	26.0	28.4	32.8	51.8	97.2	99.9	J

non-solvable

1. Diagnosing trained Transformers

"Is Transformer always better than RNNs?"

Out-of-distribution: train distr \neq test distr.

1. Diagnosing trained Transformers

"Is Transformer always better than RNNs?"

2. Improving performance

Process: stack or 2-layer Transformer. [Yao et al. 20] [WLLR 23]: all 2-layer Transformers solving Dyck need to satisfy a *balanced condition*.

~ a Transformer's version of <u>the pumping lemma</u>.

(informal: $xyz \in L \rightarrow xy^*z \in L$.)

Can theoretical insights lead to practical benefits?

1. Diagnosing trained transformers [LAGKZ23b]

2. Improving performance [WLLR23]

Can practical insights inform theory?

Practice informs theory

1d gridworld: $Q = \{1, 2, 3, 4\}, \Sigma = \{L, R\}.$

• State matters: LLRR \neq LRLR at state 1, but LLRR = LRLR at state 3.

How to determine the states in parallel?

With proper simplification, theory can inform practical machine learning methods.

1. Classic theory toolkits for understanding modern ML.

Understand task design and solutions.

With proper simplification, theory can inform practical machine learning methods.

2. Theory-inspired lens can provide practical insights.

As diagnosis tools, improving performance.

Future direction: efficient training

[LRRR 22]: why an objective fails to reach optimality in practice?

- \rightarrow A simple Gaussian setup.
- \rightarrow Provable fix with practical gain.

Simple change: $O(\exp(R)) \rightarrow O(R^2)$.

Beating the "scaling laws".

- Knowledge distillation.
- Effective use of data, curriculum.

Bridging synthetic & practical setups.

- Understanding structures in data.
- Behavior changes across scales.

With the proper simplification, theory can inform practical machine learning methods.

1. Classic theory toolkits for understanding modern ML. Understand task design and solutions.

2. Theory-inspired lens can provide practical insights.

As diagnosis tools, improving performance.

... and vice versa.

Discovering cool problems and solutions.