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How to improve large-scale machine learning?
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Trial and Error?

$63M $85k(Too many tuning knobs!)

What is a principled way
to make progress?

Theory?

errors

11100111
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 11 10001010



Understanding machine learning methods
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model

optimization
data

generation

(size, activation, 
normalization, …)

(loss, optimizer, 
hyperparameters, …)

(source, size, ordering…)

(order, sampling strategy, …)

“The Gates building was built in 2014. 
How old is Gates in 2024?”

hard to formally analyze

“10 years old.”



This talk
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With proper simplification,
theory can inform practical machine learning methods.

2. Theory-inspired lens can provide practical insights.
As diagnosis tools, improving performance.

1. Classic theory toolkits can be applied to understand modern ML.
Understand task design and solutions.



→ Tensor decomposition [Kruskal 1977]

Masking ratio in masked prediction [Devlin et al. 2018]?

[LHRR22]

→ Circuits, (semi)groups [Krohn & Rhodes 1965][LAGKZ23a]

Theory toolkits for understanding modern machine learning

→ Formalize with hidden Markov model

How Transformers [Vaswani et al. 2017] “reason”?

→ Formalize with finite automata.

Understand 
the task

Understand 
the solution



Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.
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“Ithaca takes [MASK] name from the [MASK] island of [MASK] in [MASK] Odyssey.”

Model

“Ithaca takes     its   name from the  Greek  island of Ithaca in Homer’s Odyssey.”

Competitive performance for language understanding.How much should we mask?
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“Ithaca takes its name [MASK] the Greek island of Ithaca in Homer’s Odyssey.”

Model

Mask too little: easy to infer.

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.

from



8

“[MASK] takes [MASK][MASK][MASK] the [MASK][MASK] of [MASK] in [MASK] Odyssey.”

Model

Mask too much: expensive, or even impossible.

Understanding design choices of a task

Masked prediction [Devlin et al. 18]: predicting missing words in a sentence.



9

Task design: how much masking is sufficient?
Ta

sk
 a

cc
ur

ac
y

[Wettig et al. 22]

sweet spot 

Mask ratio

15%? [Devlin et al. 18]

[LDRR 22]: with Hidden Markov Model data,

• Masked predictor → tensors;

• Tensor decomposition → HMM parameters.

for recovering HMM parameters



Data: Hidden Markov Model (HMM): latents {ℎ!} → observables {𝑥!}.

Masked Prediction with HMM
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• Discrete latents {ℎ!}: 𝑃 ℎ!"# ℎ! ← 𝑇 (transition matrix)

𝑥# 𝑥$ 𝑥%

ℎ# ℎ$ ℎ% ⋯

𝑥# 𝑥$ 𝑥%

ℎ# ℎ$ ℎ% ⋯

• Discrete observables {𝑥!}:  𝑃 𝑥! ℎ! ← 𝑂 (emission matrix)

𝑥# 𝑥$ 𝑥%

ℎ# ℎ$ ℎ% ⋯

Masked prediction task: e.g. 𝑥$, 𝑥%|𝑥# … *up to 3 tokens



Parameter Identifiability
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• Optimal predictor, e.g. 𝑓 2,3 1 (𝑥) = 𝔼[𝑥$⊗𝑥%|𝑥# = 𝑥].

An identifiable task: parameters can be recovered* from the predictor 𝑓.

*Up to permutation: 𝑂 = #𝑂𝛱, 𝑇 = 𝛱! #𝑇𝛱	for some permutation 𝛱	.

• Predicting with the squared loss.
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Why predicting more helps with identifiability

Intuition: matrix (2-tensor) factorization is not unique.

• !𝑂 	≔ 𝑂𝑅, !𝑇:= 𝑅!𝑇𝑅 for an orthogonal 𝑅 (~rotation of a small angle).

• Matching 𝑓∗ 𝑥# 𝑥$ → matching 𝑂𝑇𝑂! = !𝑂 !𝑇 !𝑂!. 

• Pairwise (𝑥!&|𝑥!): not identifiable

(Thm) ∃ !𝑂, 𝑂 s.t. !𝑂 ≠ 𝑂, but produce the same pairwise predictors.
(i.e. 𝑥! 𝑥", 𝑥" 𝑥!, 𝑥# 𝑥", 𝑥" 𝑥#)

• Triplet (𝑥!! , 𝑥!"|𝑥!#)
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Why predicting more helps with identifiability

Intuition: (3-)tensor decomposition is unique.

(Thm) 𝑂, 𝑇 are identifiable from the task 𝑥%! ⊗𝑥%" 	|	𝑥%# 	,
for 𝑡$, 𝑡#, 𝑡& being any permutation of {1,2,3}.

𝑥!, 𝑥"|	𝑥#

(𝑥" ⊥ 𝑥#|	ℎ")

• 3-tensor = input ⊗ predictor output:

𝑊	 ≔ ∑$$ 𝑥%⊗𝔼[𝑥"⊗𝑥#|𝑥%]  

→ 𝑊 = ∑&⋯⊗𝑂& ⊗ 𝑂𝑇 &  

: not identifiable : identifiable

*prior work: 3rd order moments 𝔼[𝑥#⊗𝑥!⊗𝑥"]

• Pairwise (𝑥!&|𝑥!) • Triplet (𝑥!! , 𝑥!"|𝑥!#)

… Kruskal’s theorem → unique 𝑂' , { 𝑂𝑇 '}.
[Kruskal 1977]



→ Tensor decomposition [Kruskal 1977]

Masking ratio in masked prediction [Devlin et al. 2018]?

[LHRR22]

→ Circuits, (semi)groups [Krohn & Rhodes 1965][LAGKZ23a]

Theory toolkits for understanding modern machine learning

→ Recovering parameters in hidden Markov model

How Transformers [Vaswani et al. 2017] “reason”?

→ How Transformers learn finite automata?

Understand 
the task

Understand 
the solution



→ Tensor decomposition [Kruskal 1977]

Masking ratio in masked prediction [Devlin et al. 2018]?

[LHRR22]
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→ Recovering parameters in hidden Markov model

How Transformers [Vaswani et al. 2017] “reason”?

→ How Transformers learn finite automata?

Understand 
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Understand 
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Transformers for “reasoning”

regular
Grammars 

finite

push-down

linear bounded

Turing machine

Automata

Goal: classify solutions for learning finite automata.

Reasoning is a form of computation.

Prior work: parity (Hanh 20), bounded Dyck (Yao et al. 22), 

?



Sequential reasoning via automata

states inputs transitions

𝑞! = 𝛿 𝑞!"#, 𝜎!
(𝑄 is finite)

𝒜 = 𝑄, Σ, 𝛿  

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

parity counter

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

1-bit memory unit

(will reappear later)

Task: simulating the dynamics of 𝒜.

17

(no-op)



Task: Simulating automata

Simulating	𝒜: learn a seq2seq function for sequence length 𝑇.

𝒜 = 𝑄, Σ, 𝛿
states, inputs, transitions

18

𝜎#	 𝜎$ 	 ⋯	 𝜎)

⊂ 𝑄) (states)

Input:

𝑞#	 𝑞$ 	 ⋯	 𝑞)

⊂ Σ) (alphabet)

Output:

Model (Transformer/RNN)



The Transformer layer
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𝑙%( layer, position 𝑖 ∈ 𝑇 : 𝑥'
(*) = 𝜙(∑,-' 𝛼',

* 𝑥,
*.$ )

Computation parallel across positions.

𝜙(∑𝛼!"𝑥")

→ ∑$ 𝛼%$ = 1 
• 𝛼&' ∝ exp(⟨𝑊(𝑥& ,𝑊)𝑥'⟩):

the only source of interaction.

• 𝜙: computed per-position.

Parameters shared across positions.

attention scores (∑' 𝛼&' = 1)



The Transformer layer
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𝑙%( layer, position 𝑖 ∈ 𝑇 : 𝑥'
(*) = 𝜙(∑,-' 𝛼',

* 𝑥,
*.$ )

1. uniform attention / 𝜶𝒊 = [#+ ,
#
+ , ⋯ , #)] 2. sparse attention / 𝜶𝒊 = [0,⋯1, 0,⋯ ]

attention scores: ∑' 𝛼&' = 1 
Computation parallel across positions.

e.g. average, sum. e.g. selection.

parameters

𝜙 𝜙



Architecture choices

Recurrent Neural Nets (RNNs)
sequential across positions
Natural for 𝑞+ = 𝛿 𝑞+,%, 𝜎+

𝑻 positions

21

Transformer
parallel across positions

𝑳 layers

sequential across layers

𝐿 (#layers) ≪ 𝑇 (# positions)

parallel

~ width-𝑇, depth-𝐿 circuit, but with weight sharing.



A parallel model for a sequential task?
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even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

parity



Different ways to simulate automata

Simulating = mapping from (𝜎#, 𝜎$, ⋯ , 𝜎)) ⊂ Σ) to 𝑞#, 𝑞$, ⋯ , 𝑞) ⊂ 𝑄).

e.g. parity

Iterative solution

𝑞+ = 𝛿 𝑞+,%, 𝜎+ =	𝑞+,%⊕	𝜎+

Parallel solution

𝑞+ = ∑-.+ 𝜎- 	mod	2 

“RNN solutions” “Transformer solutions”

𝒜 = 𝑄, Σ, 𝛿
states, inputs, transitions

𝑇

𝐿=1

Shortcut
𝑜(𝑇)	# sequential steps

23



Solutions of Reasoning

𝑞! 
𝑞" 

𝑞# 𝜎! 𝜎" 𝜎$ 𝜎% 

𝑞$ 

𝑞% 

…

…

iterative state emulation 🐢

Sequential solutions

(Thm 1) 𝑶(𝐥𝐨𝐠	𝑻) layers

By 𝛿’s definition;
 natural for RNNs

Shortcuts (#steps = 𝑜(𝑇))

𝒜 = 𝑄, Σ, 𝛿 , 	 𝑞& = 𝛿 𝑞&'#, 𝜎& .

# steps = # sequential computation steps

24

Transformer can simulate 𝒜	with:

(Thm 2) P𝑶 𝑸 𝟐  layers

(# steps = 𝑇)

Task structure?

Why Transformer?



𝑂(log	𝑇) steps 

Goal: compute 𝑞! = 𝛿 ⋅, 𝜎! ∘ ⋯ ∘ 𝛿 ⋅, 𝜎# 	(𝑞$), 𝑡 ∈ [𝑇].

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)parity counter

𝛿 ⋅, 0 = 1 0
0 1  ,    

function         matrix

𝛿 ⋅, 𝜎 : 	𝑄 → 𝑄

composition          multiplication

𝛿 ⋅, 1 = 0 1
1 0  

𝒜 = 𝑄, Σ, 𝛿 ,
𝑞& = 𝛿 𝑞&'#, 𝜎& .

25

associativity

𝑂 log 𝑇

🤔



How to use 𝑜(log 𝑇) layers?
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We already have positive results.
• Parity: only need to count #1s.

Counting works for commutative function composition: 𝑂 1  layers.

How about non-commutative compositions?

𝑓 ∘ 𝑔 = 𝑔 ∘ 𝑓	

𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓	

𝑞& = ∑()&𝜎( 	mod	2 

Decomposition

𝑞% = 𝛿 ⋅, 𝜎% ∘ ⋯ ∘ 𝛿 ⋅, 𝜎" 	(𝑞&)



Decomposition: car on a circle

𝑄 =	{      , 🚗} × 0,1,2,3 , Σ = {𝐷(drive), 𝑈(U−turn)}. 
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• Direction =  parity (sum) of 𝑈. (parity: {1, -1} ↔ {0, 1})

• Position   =  signed sum mod 4 : sign = parity of 𝑈.

𝑞8	 𝐷	 𝐷	 𝐷	 𝑈	 𝐷	 𝐷	 𝑈	 𝑈	 𝐷
Parity:   1    1   1   1 -1  -1  -1  1  -1  -1 →🚗

Signed sum:   0  1   1   1   0  -1 -1  0   0   -1 →  0

𝐷𝑈	

𝑈𝐷
𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓	

𝑂(1) layer each

𝑞8 = (      , 0),  𝜎#:) = 𝐷𝐷𝐷𝑈𝐷𝐷𝑈𝑈𝐷 → 𝑞)?
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Decomposition: general

Set with a binary operator

• Associativity: 𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐

• Identity: 𝑒 ⋅ 𝑎 = 𝑎 ⋅ 𝑒 = 𝑎

• Inverse: 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 = 𝑒

What are we decomposing?
🤔

Transformation group: 𝒯 𝒜 ≔ 𝛿 ⋅, 𝜎 ∶ 𝜎 ∈ Σ  under composition.



What are we decomposing?
🤔

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

cyclic group 𝐶#
𝒯 𝒜  

(mod 2)

𝛿 ⋅, 0 = 1 0
0 1  ,    

𝛿 ⋅, 1 = 0 1
1 0  

~ 2 (prime factor)

Decomposition: general

29

0

1

decomposition ≈ prime factorization

parity counter

Transformation group: 𝒯 𝒜 ≔ 𝛿 ⋅, 𝜎 ∶ 𝜎 ∈ Σ  under composition.

e.g. the car example 
𝐶* ⋊ 𝐶!.
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Decomposing 𝒯 𝒜 Group: associative + invertible

(𝒯 𝒜 =) 𝐺 = 𝐻A ⊳ ⋯ ⊳ 𝐻$ ⊳ 𝐻# (Jordan & Hölder)

→ If abelian → cyclic → 1 Transformer layer

𝑛 = 𝑂(log |𝐺|) 𝐻B"#/𝐻B	are simple groups
~ prime numbers

“Prime factorization” for groups:

Solvable 𝐺 can be simulated with 𝑂(log 𝐺 ) layers.

𝐺 is solvable if all {𝐻B"#/𝐻B} are abelian.
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Decomposition 𝒯 𝒜 Semigroup: associative + invertible

Transformation group: 𝒯 𝒜 ≔ 𝛿 ⋅, 𝜎 ∶ 𝜎 ∈ Σ  under composition.
semigroup

𝛿(⋅, ) = 0 1
0 1

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)
… singular

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

1-bit memory unit

Invertible?

Group: associative + invertible



32

Decomposition 𝒯 𝒜 Semigroup: associative + invertible

Transformation group: 𝒯 𝒜 ≔ 𝛿 ⋅, 𝜎 ∶ 𝜎 ∈ Σ  under composition.
semigroup

𝒯 𝒜  is a group: factorized into groups by Jordan & Hölder.

𝒯 𝒜  is a semigroup: factorized into permutation-reset automata by Krohn-Rhodes. 
Def: 𝛿 ⋅, 𝜎 	is a permutation (forming 𝐺) or a constant.

A permutation-reset automaton can be simulated with 𝑂(log 𝐺 ) layers.
≤ |𝑄| 𝑂( 𝑄 log 𝑄 )𝒯 𝒜 :	�̂�( 𝑄 $)



!𝑂 𝑄 !  steps decomposition with Transformers

Krohn-Rhodes: solvable 𝒜	decomposes into permutations and resets.

33

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

𝛿 𝑞, 𝜎 = 𝑞 + 𝜎	mod	𝑝	

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

𝛿 𝑞, 𝜎 = 𝜎, 
𝛿 𝑞, ⊥ = 𝑞.

cyclic groups memory unit

Each representable by 1 Transformer layer

uniform attention sparse attention



Solutions of Reasoning

𝑞! 
𝑞" 

𝑞# 𝜎! 𝜎" 𝜎$ 𝜎% 

𝑞$ 

𝑞% 

…

…

iterative state emulation 🐢

Sequential solutions

(Thm 1) 𝑶(𝐥𝐨𝐠	𝑻) layers.

Shortcuts (#steps = 𝑜(𝑇))

𝒜 = 𝑄, Σ, 𝛿 , 	 𝑞& = 𝛿 𝑞&'#, 𝜎& .
# steps = # sequential computation steps

34

Transformer can simulate 𝒜	with:

(Thm 2) P𝑶 𝑸 𝟐  layers.

associativity
tree: divide and conquer

algebraic structure
Krohn-Rhodes decomposition

by 𝛿 or RNNs.

#steps = 𝑇,

(solvable 𝒜	only)
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1. Can we improve 𝑂(log	𝑇) in general? Likely not.

• Constant-depth Transformer is in TC0 [Merrill et al. 21].

• Some automata are NC1 complete (e.g. 𝑆C).

→ Ω(log 𝑇) unless TC0 = NC1.

2. What is special about Transformers? 

• Parameter sharing: 𝑇 times more efficient than directly “compiling” a circuit.

• Parallelism: for a cyclic group 𝐶$0 , 1 Transformer layer vs 𝑘 steps in Jorden-Holder.

All 𝒜: 𝑶(𝐥𝐨𝐠	𝑻) layers. Solvable 𝒜	: P𝑶 𝑸 𝟐  layers.Remarks

(for any abelian group)
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Can theoretical insights lead to practical benefits?

1. Diagnosing trained Transformers [LAGKZ23b]

2. Improving performance [WLLR23] 



1. Diagnosing trained Transformers

“Is Transformer always better than RNNs?”

Sanity check: can shortcuts be found 
through finite-sample training?

26

• Good in-distribution accuracy.

• Rows ordered by #factorization steps.
• Deeper factorization → more layers.

Transformer depth 𝑳 (𝑇=100)

autom
aton

non-solvable

out-of-distribution?



1. Diagnosing trained Transformers

“Is Transformer always better than RNNs?”

Out-of-distribution: train distr ≠ test distr.

26

• train: 𝑝 1 = 0.5
• test: varying 𝑝(1).even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)
• mod: fit by a piecewise-linear network.

→ fail at unseen ∑B∈[!]𝜎B .

Ac
cu

ra
cy

Transformer fails to solve parity.

Transformer
With sParallel shortcut: 𝑞! = ∑B∈[!]𝜎B 	mod	2 



[LAGKZ23b] 

(←) Error on denser inputs

(←
) E

rr
or

 (s
pa

rs
er

)

1. Diagnosing trained Transformers

each point
= 1 transformer

even odd

0 0

1
1

Q = {even, odd}
Σ = {0, 1}

♦♣

⊥, σ♣ ⊥, σ♦

σ♣

σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

𝖱
𝖫

𝖱
𝖫

𝖱
𝖫1 2 3 4

Q = {1, 2, 3, 4}
Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

1-bit memory unit

RNN

Finite-sample training: Transformer < RNN.

• Due to inherent limitations of attention.

26

“Is Transformer always better than RNNs?”

• Cannot be fixed by “scaling” (model/data size ↑).

Out-of-distribution: train distr ≠ test distr.

varying 𝑝(⊥)



2. Improving performance
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(   [   ]   )

(   [ )   ]

valid

invalid

for (cond) {
  x[i] = …
} 

Hierarchical structure

Dyck language
(balanced parentheses) 

[WLLR 23]: all 2-layer Transformers solving Dyck 
need to satisfy a balanced condition.

Accuracy (→)

(←
) V

io
la

tio
n ← Default

↓ Enforcing balance

~ a Transformer’s version of the pumping lemma.
(informal: 𝑥𝑦𝑧 ∈ 𝐿 → 𝑥𝑦∗𝑧 ∈ 𝐿.)

Process: stack or 2-layer Transformer.
[Yao et al. 20]
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Can theoretical insights lead to practical benefits?

1. Diagnosing trained transformers [LAGKZ23b]

2. Improving performance [WLLR23] 

Can practical insights inform theory?



1

4
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Practice informs theory

even odd

0 0

1
1
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Σ = {𝖫, 𝖱}

parity counter memory unit 1D gridworld

𝖫 𝖱

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)

1d gridworld: 𝑄 = {1, 2, 3, 4}, Σ = {L, R}.

• State matters: LLRR ≠ LRLR at state 1, but LLRR = LRLR at state 3.

2 boundaries

How to determine the states in parallel?



Parallel solution for                                       ?

Practice informs theory

43

Hint from a trained Transformer: boundary detection.

Left boundary

even odd
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Σ = {6 face rotations}
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σ6

(a) (b) (c) (d) (e)

→ 𝟑-layer solution (Krohn-Rhodes: #𝑂 𝑄 " 	)

Cu
rr

en
t p

os
iti

on

Previous positions

“mechanistic interpretability”
extracting algorithms from trained models

Why boundaries? No boundary → prefix sum.
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With proper simplification,
theory can inform practical machine learning methods.

1. Classic theory toolkits for understanding modern ML.
Understand task design and solutions.

Many other connections!

even odd
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(a) (b) (c) (d) (e)

• Circuit complexity [Merrill et al. 21]

• Communication complexity [Sanford et al. 23]
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2. Theory-inspired lens can provide practical insights.
As diagnosis tools, improving performance.

… and vice versa!

even odd
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(a) (b) (c) (d) (e)

With proper simplification,
theory can inform practical machine learning methods.
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Future direction: efficient training

[LRRR 22]: why an objective fails 
to reach optimality in practice?
→ A simple Gaussian setup.
→ Provable fix with practical gain.

Simple change: 𝑂 exp 𝑅 → 𝑂(𝑅!).

• Knowledge distillation.
• Effective use of data, curriculum.

Beating the “scaling laws”.

• Understanding structures in data.

Bridging synthetic & practical setups.

• Behavior changes across scales.
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With the proper simplification,
theory can inform practical machine learning methods.

1. Classic theory toolkits for understanding modern ML.
Understand task design and solutions.

2. Theory-inspired lens can provide practical insights.
As diagnosis tools, improving performance.

… and vice versa.
Discovering cool problems and solutions.


