

arxiv:2410.05464

Bingbin Liu

arxiv:2511.02833

Learning from the Right Teacher in Knowledge Distillation

Abhishek

Panigrahi

Kempner Institute, Harvard University

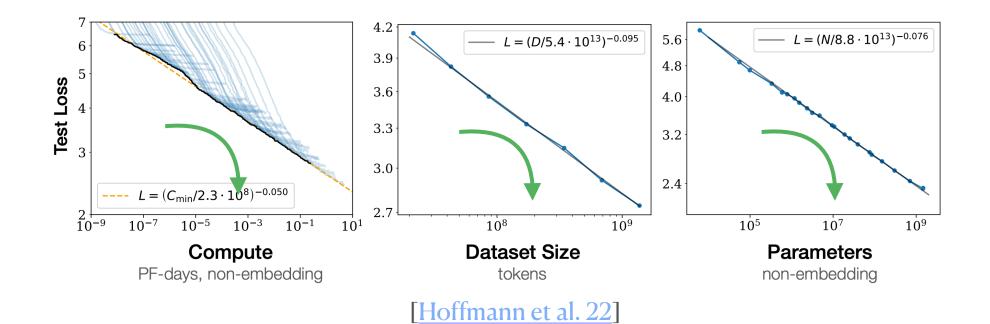
Sadhika Malladi

Sham Kakade

Andrej Risteski

Surbhi Goel

Progress at a small scale?



Progress at a small scale?

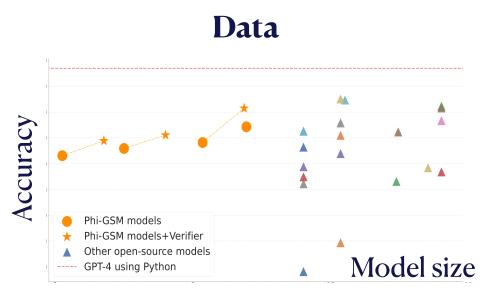
e.g. better performance at a small model size?

Why this matters:

- 2. Cost ... training and inference cost \$\$\$.
- 3. Accessibility ... research and usage.

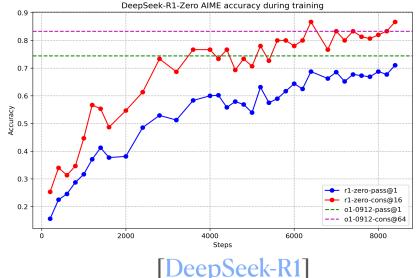
Progress at a small scale? ... with distillation

e.g. better performance at a small model size? Possible!



[Liu et al. 23]

Algorithm



This talk: knowledge distillation

Better small models, by leveraging powerful pretrained models.

• Faster training: fewer samples (statistical) / steps (computational).

System & training set	Train Frame Accuracy	Test Frame Accuracy
Baseline (100% of training set)	63.4%	58.9%
Baseline (3% of training set)	67.3%	44.5%
Soft Targets (3% of training set)	65.4%	57.0%

[<u>Hinton et al. 15</u>]

This talk: knowledge distillation

Better small models, by leveraging powerful pretrained models.

• Better inference: performant small models; "model compression".

→ or: quantization, pruning.

	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench	
Model	pass@1	cons@64	pass@1	pass@1	pass@1	
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9	
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2	
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	

[DeepSeek R1 report]

This talk: knowledge distillation

Better small models, by leveraging powerful pretrained models.

??

• Better inference: performant small models; "model compression".

→ or: quantization, pruning.

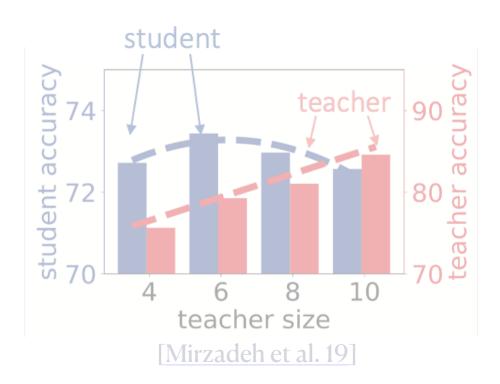
	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench	
Model	pass@1	cons@64	pass@1	pass@1	pass@1	
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9	
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2	
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	

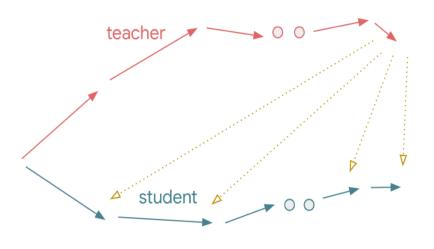
[DeepSeek R1 report]

Stronger teacher --> better student

"capacity gap"

(due to differences in size / training steps)





[Harutyunyan et al. 23]

Stronger teacher --> better student

"capacity gap"

(due to differences in size / training steps)

Method	BERT _{base}	BERT _{large}	\triangle
Teacher	86.7	88.3	+1.6
KD _{10%/5%} (2015)	81.3	80.8	-0.5
DynaBERT _{15%/5%} (2020)	81.1	79.2	-1.9
MiniDisc _{10%/5%} (2022a)	82.4	82.1	-0.3
TinyBERT _{4L;312H} (2020)	82.7	82.5	-0.2
MiniLM _{3L;384H} (2021b)	82.5	82.0	-0.5
MiniMoE _{3L;384H} (ours)	82.6	83.1	+0.5

1B-model / 5B-tokens / HQ-rephrased 3.36 3B generator 8B generator 3.35 70B generator Validation Loss 3.31 3.30 10 20 Synthetic Data Ratio /% [Kang et al. 25]

[Zhang et al. 23]

Distilling from the right teacher

Progressive distillation: implicit curricula from intermediate checkpoints.

- Case study on sparse parity: improved sample complexity.
- Empirically verified more broadly.

GRACE for teacher selection: scoring teachers for LLM post-training.

- Indicative of the student's performance.
- Guide design choices.

Part 0: knowledge distillation background

What is knowledge distillation?

Training a "student" model using a (trained) "teacher" model.

• Classification with cross-entropy loss: $f(x) \in \Delta^{k-1}, y \in [k]$. (per-token for LLM)

Learn from data:
$$L_{CE}(f(x), y) = -\log[f(x)]_y = \mathrm{KL}(\delta_y || f(x)).$$

Distillation from
$$f_T$$
: $L_D(f(x), f_T(x)) = \text{KL}(f_T(x)||f(x))$.

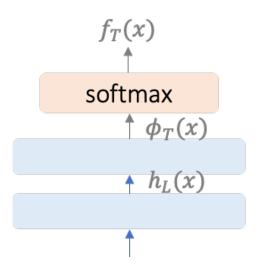
reverse KL, l₂, etc.

In practice, often use both: $\alpha L_{CE} + (1 - \alpha)L_D$.

How to knowledge distill?

Mimic the teacher's outputs or intermediate activations.

- Post-softmax output $[f(x)]_i \propto \exp(\tau^{-1} \cdot [\phi(x)]_i)$. (inverse) temperature
 - Intermediate activation: need to match dimension.
- For LLMs / (probabilistic) generative models:
 - Per-token logits (pre/post-softmax).
 - Samples: e.g. synthetic data.



How to knowledge distill?

Various scenarios

Big/strong teacher → small/weak student.

- (by capabilities) Same-sized teacher & student: self-distillation.
 - Small/weak teacher \rightarrow big/strong student (weak-to-strong).

(by quantities)

- An ensemble of teachers \rightarrow a single student.
- A single teachers \rightarrow a series of students.

Why is distillation helpful?

Intuition: "richer information" ... e.g. class relation, per-sample weighting.

• An ideal teacher: $f_T(x) = p^*(y|x)$, i.e. providing the <u>full label distribution</u>.

more informative than the data i.e. a single $y \sim p(\cdot | x)$.

Soft labels $/p^*(y|x)$ lead to better generalization [Menon et al. 20].

• Part 1: effect on optimization.

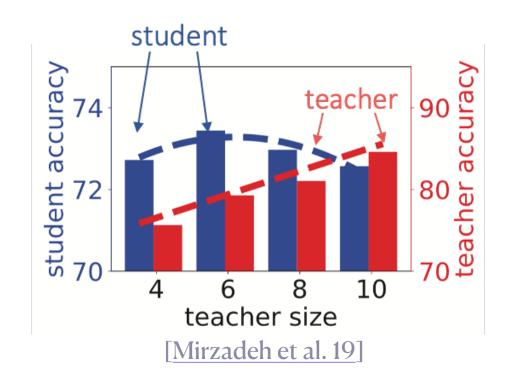
Part 1: Progressive distillation

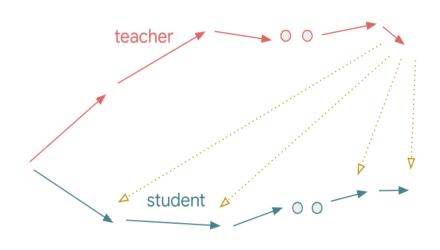
Implicit curriculum from intermediate checkpoints

Recall: stronger teacher -> better student

"capacity gap"

(due to differences in size / training steps)



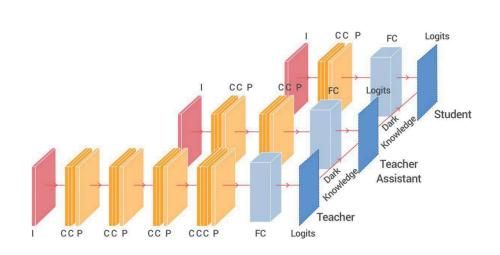


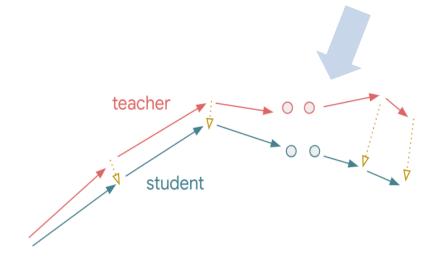
[Harutyunyan et al. 23]

Recall: stronger teacher --> better student

Closing the "capacity gap".

(intermediate sizes / training steps)





[Mirzadeh et al. 19]

[Harutyunyan et al. 23]

Why intermediate teachers help?

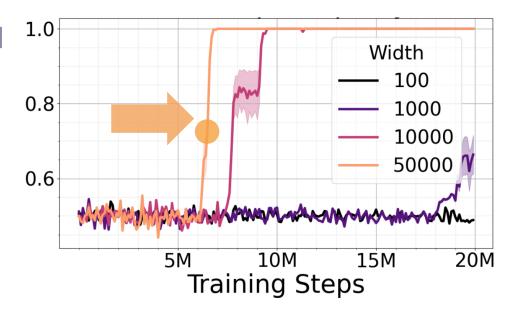
Prior work: better generalization (upper) bounds [Harutyunyan et al. 23].

Our work: an optimization perspective.

- · Intuition: using teacher's trajectory to guide the student's optimization.
- Case study: sparse parity ... prior theory fails to explain the gain.
- Empirical validation on more realistic settings (PCFG and natural languages).

Case study: sparse parity

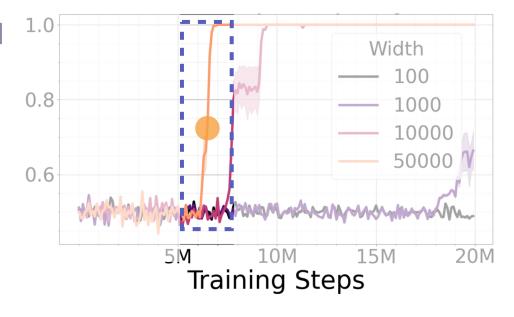
- Bigger model trains faster. [Edelman et al. 23]
 - SQ lower bound [Kearns 98]
- Smaller models train as fast, when using intermediate checkpoints.



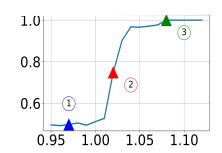
Case study: sparse parity

- Bigger model trains faster. [Edelman et al. 23]
 - SQ lower bound [Kearns 98]
- Smaller models train as fast,
 when using intermediate checkpoints.

which ones?

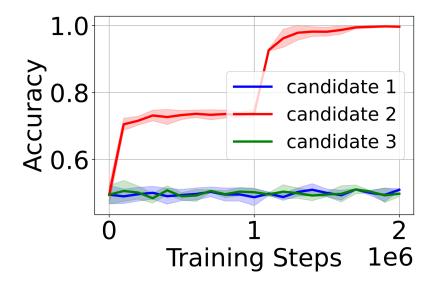


Signals from intermediate teachers

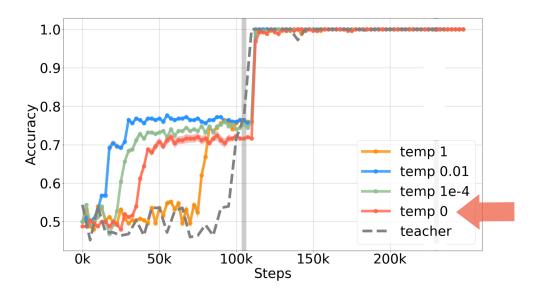


Setup: learning from 1 intermediate teacher + the final teacher.

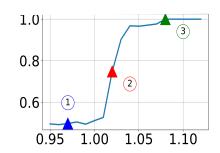
- Choices: before / during / after the phase transition.
 - 1. Lead to a better student.



Not because of "soft labels".



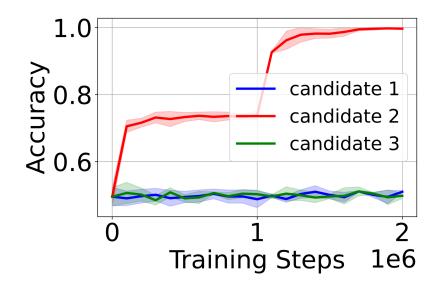
Signals from intermediate teachers



Setup: learning from 1 intermediate teacher + the final teacher.

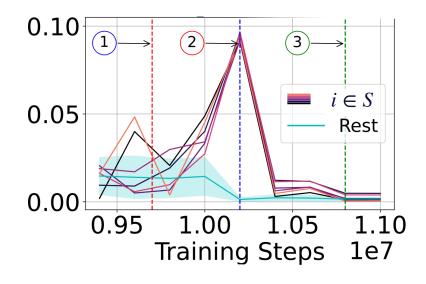
• Choices: before / during / after the phase transition.

1. Lead to a better student.



Implicit curriculum

2. Providing "extra signals".



Implicit curriculum helps with optimization

- · Case study: sparse parity: speedup from "extra training signals."
 - What are the signals? ... Fourier coefficients.
 - Why are they helpful? ... sample complexity.
 - How do they emerge in the teacher? ... initial population gradient.
- Progressive distillation & empirical validation

Training setup

Target:
$$(d, k)$$
-sparse parity: $y = \prod_{i \in S} x_i, x \in \{\pm 1\}^d, |S| = k$.

Model: 2-layer MLP:
$$f(x) = \sum_{j \in [m]} a_j \cdot \text{ReLU}(\langle w_j, x \rangle + b_j).$$

Training with the $\mathcal{C}(f(x), y) = -f(x) \cdot y$ or $f_T(x)$ for the student.

- Teacher: 2-phase: initial large batch, followed by online SGD.
- Student: 2-shot distillation, from the end of each phase.

Signals: Fourier coefficients on $x_i, x \in [S]$

Fourier basis: monomials
$$\chi_{\tilde{S}}(x) := \prod_{i \in \tilde{S}} x_i$$
, for $\tilde{S} \subset [d]$.

- Natural for sparse parity: $y_S = \chi_S$.
- Fourier coefficients = projections onto the basis:

$$\hat{f}_{\tilde{S}}(f) = \langle \chi_{\tilde{S}}, f \rangle = \mathbb{E}_{x}[\chi_{\tilde{S}}(x) \cdot f(x)].$$

Signals: Fourier coefficients on x_i , $i \in S$

Implicit curriculum via $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in S$).

Learning from
$$y = \chi_S(x) \to \Omega(d^k)$$
 samples (recall: $|S| = k$).

Learning from
$$\sum_{i \in S} \chi_{\{i\}} \to \underline{\Omega}(d)$$
 samples. $\tilde{\Theta}_{k,\epsilon}(d^2)$ for student's 2-shot distillation.

- Why: sample complexity to learn $\chi_{\tilde{S}} : \Omega(d^{|\tilde{S}|})$ (SQ lower bound).
- → Fewer samples for learning lower-degree monomials [Edelman et al. 22, Abbe et al. 23].

Signals: Fourier coefficients on x_i , $i \in S$

Implicit curriculum via $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in S$).

• How: population gradient at initialization [Edelman et al. 22]. Consider a single neuron $w \in \mathbb{R}^d$:

$$f(x) = \sigma(w^{\mathsf{T}}x + b)$$
$$l(y, y') = -yy'$$

$$-\widehat{\text{LTF}}_{S'} \leftarrow g_i := (\nabla_w \mathbb{E}_x[l(y, f(x; w)])_i = -\nabla_w \mathbb{E}_x[1[w^\top x + b \ge 0] \cdot yx_i]$$

$$= -\mathbb{E}_x[1[w^\top x + b \ge 0] \cdot (\prod_{j \in S} x_j) \cdot x_i]$$

$$\text{Fact: } |\widehat{\text{LTF}}_{S_1}| > |\widehat{\text{LTF}}_{S_2}|$$

$$\text{for odd } |S_1|, |S_2| \text{ s.t. } |S_1| < |S_2|.$$

$$\chi_{S'}, S' = S \setminus \{i\} \text{ (if } i \in S) \text{ or } S \cup \{i\} \text{ (if } i \notin S)$$

Signals: Fourier coefficients on $x_i, x \in [S]$

Implicit curriculum via $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in S$).

• How: population gradient at initialization [Edelman et al. 22].

$$f(x) = \sigma(w^{\mathsf{T}}x + b)$$
$$l(y, y') = -yy'$$

Consider a single neuron
$$w \in \mathbb{R}^d$$
:

$$g_{i} := (\nabla_{w} \mathbb{E}_{x}[l(y, f(x; w)])_{i} = -\nabla_{w} \mathbb{E}_{x}[1[w^{T}x + b \geq 0] \cdot yx_{i}]$$
 (Fourier gap)
$$= -\mathbb{E}_{x}[1[w^{T}x + b \geq 0] \cdot (\prod_{j \in S} x_{j}) \cdot x_{i}] \implies |g_{i}| \geq |g_{j}| + \gamma_{k}, i \in S, j \notin S.$$

$$|g_{i}| \geq |g_{j}| + \gamma_{k}, i \in S, j \notin S.$$

$$|g_{i}| \geq |g_{j}| + \gamma_{k}, i \in S, j \notin S.$$

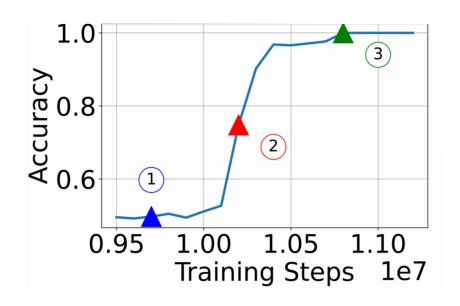
$$|g_{i}| \geq |g_{j}| + \gamma_{k}, i \in S, j \notin S.$$

$$|g_{i}| \geq |g_{j}| + \gamma_{k}, i \in S, j \notin S.$$

$$|g_{i}| \geq |g_{j}| + \gamma_{k}, i \in S, j \notin S.$$

Signals: Fourier coefficients on $x_i, x \in [S]$

Our focus: $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in [d]$).



larger $|\chi_{\{i\}}|$ for $i \in S$



Implicit curriculum helps with optimization

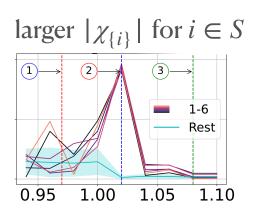
- Sparse parity: faster feature learning from "extra training signals."
 - What the curriculum are: Larger Fourier coeffs on x_i , $i \in [S]$.
 - Why they are helpful: sample complexity $\Omega(d^k) \to \tilde{\Theta}(d^2)$.
 - · How they emerge: Initial population gradient reveals the support.

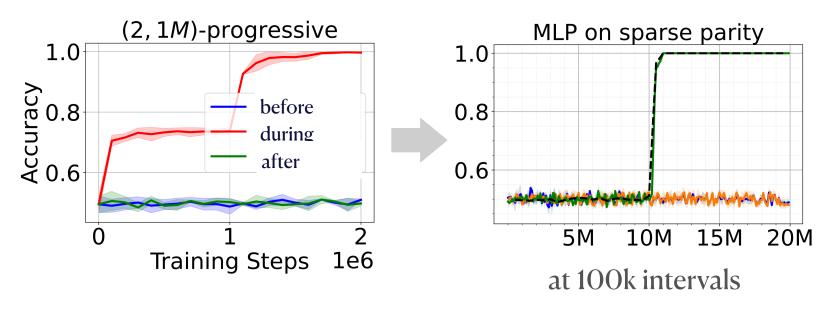
Implicit curriculum: a helpful decomposition.

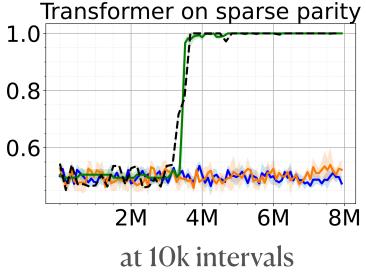
Next: progressive distillation & empirical validation

Progressive distillation

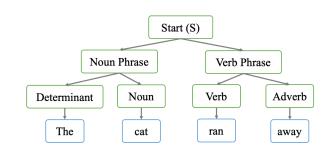
Distilling from checkpoints at certain intervals.







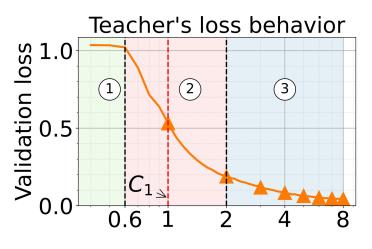
Beyond sparse parity

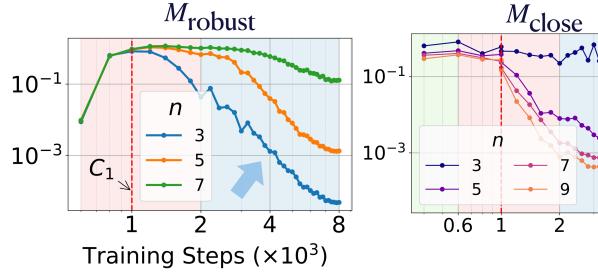


Task: Masked prediction on formal (PCFG) and natural (Wiki/Books) languages.

Implicit curriculum: *n*-grams with an increasing *n*.

• Smaller *n* (more local/lower sensitivity) is easier [Abbe et al. 23,24; Vasudeva et al. 24].





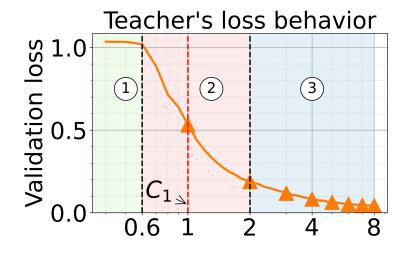
Beyond sparse parity

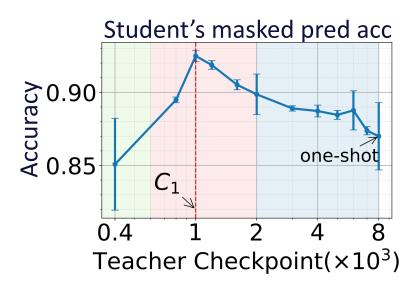
Task: Masked prediction on formal (PCFG) and natural (Wiki/Books) languages.

Implicit curriculum: *n*-grams with an increasing *n*.

Results: "phase-transition" checkpoints are the best teachers.

· PCFG:





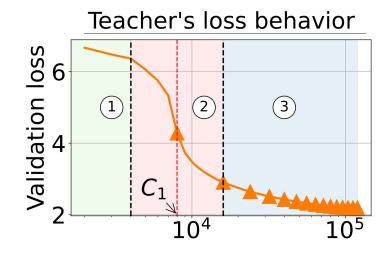
Beyond sparse parity

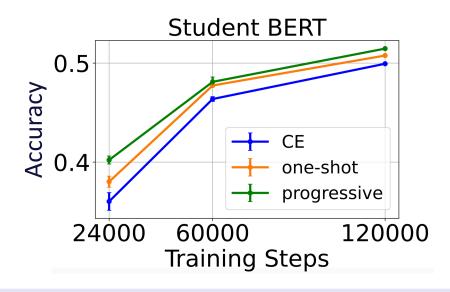
Task: Masked prediction on formal (PCFG) and natural (Wiki/Books) languages.

Implicit curriculum: *n*-grams with an increasing *n*.

Results: "phase-transition" checkpoints are the best teachers.

• Wiki/Books:



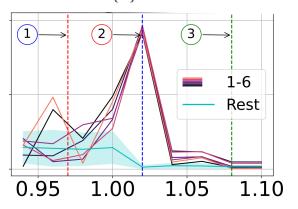


Part 1: right teacher for faster training

Progressive distillation induces an implicit curriculum that accelerates optimization.

- Sparse parity: a *low-degree curriculum* → improved sample complexity.
 - Analysis: larger Fourier coefficients on $\{i\}, i \in S$.
 - Generalization: hierarchical parity.
- PCFG & natural languages: *n-gram curriculum*.

larger $|\chi_{\{i\}}|$ for $i \in S$



Part 2: The GRACE Score

Teacher selection for LLM post-training

Knowledge distillation for LLMs

1. Efficient post-training.

(can be better than RL)

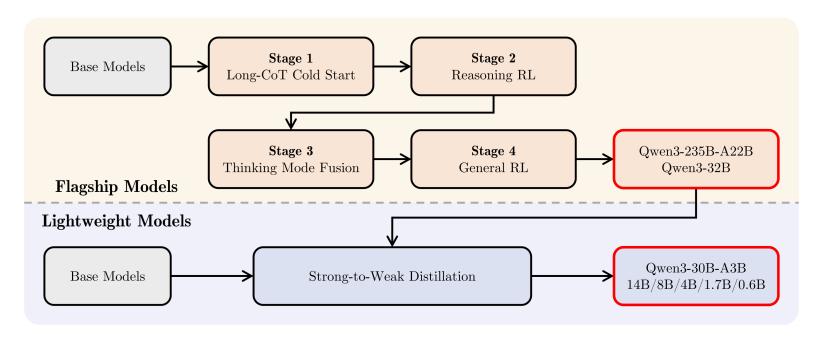
	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench
Model	pass@1	cons@64	pass@1	pass@1	pass@1
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2

[DeepSeek R1 report]

Knowledge distillation for LLMs

1. Efficient post-training.

2. Make the model RL-able.



[Qwen3 report]

Knowledge distillation for LLMs

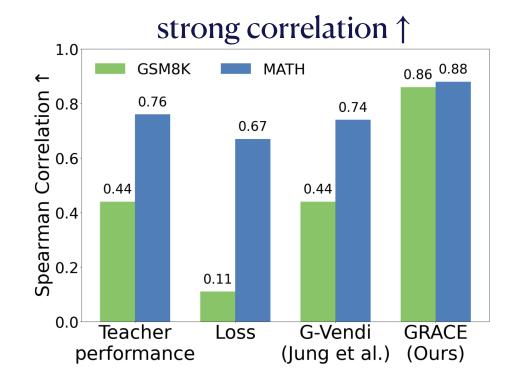
So many choices...!

(Recall: capacity gap)

GRACE: a score for LLM teacher selection

(GRAdient Cross-validation Evaluation)

- 1) Indicative of the student's performance;
- 2) Informing distillation practices.
 - generation temperature?
 - teacher under a constrained size?
 - teacher within a family?



Commonly used for data selection.

Student's gradients on teacher's (unverified) generations.

- Computationally light-weight ... compared to training.
- Black-box access suffices ... e.g. API access.
- Applicable across model families ... no tokenizer issues.

GRACE: gradient norm, weighted by the spectrum of normalized gradients.

Student's gradients on teacher's (unverified) generations.

For a (small) dataset D, compute gradients $G \in \mathbb{R}^{N \times d}$ with rows $\{g_x\}$.

- Gradient covariance $\Sigma := G^{\mathsf{T}}G \in \mathbb{R}^{d \times d}$. \nearrow on normalized gradients
- Take a partition $D_1 \cup D_2 = D$; compute Σ_1 , and $\tilde{\Sigma}_2$.

→ leave-one-out conditional mutual info ≤ GRACE.

GRACE: gradient norm, weighted by the spectrum of normalized gradients.

$$\mathbf{GRACE}(D) := \hat{\mathbb{E}}_{D_1 \cup D_2 = D} \big[\mathrm{Tr} \big(\Sigma_1 \tilde{\Sigma}_2^{-1} \big) \big]$$

For a (small) dataset D, compute gradients $G \in \mathbb{R}^{N \times d}$ with rows $\{g_x\}$.

- Gradient covariance $\Sigma := G^{\mathsf{T}}G \in \mathbb{R}^{d \times d}$. \bigcirc on normalized gradients
- Take a partition $D_1 \cup D_2 = D$; compute Σ_1 , and $\tilde{\Sigma}_2$.

 \rightarrow leave-one-out conditional mutual info \lesssim GRACE.

GRACE: gradient norm, weighted by the spectrum of normalized gradients.

$$\mathbf{GRACE}(D) := \hat{\mathbb{E}}_{D_1 \cup D_2 = D} \left[\mathbf{Tr} \left(\Sigma_1 \tilde{\Sigma}_2^{-1} \right) \right]$$

$$\sum_{i \in [d]} \lambda_i^{-1} \mathbb{E}_{x \sim D_1} \left(\langle v_i, g_x \rangle^2 \right), \ \{\lambda_i, v_i\} \text{ on } D_2.$$
 scale with gradient norm

- Norm only: G-Norm := $\mathbb{E}_{x \sim D} ||g_x||^2$.
- Spectrum only: G-Vendi (Jung et al. 25) := $-\sum_{i \in [d]} \lambda_i \log \lambda_i$.

Teacher selection for math reasoning

(lots of teachers available)

• Datasets: GSM8K (left), MATH (right).

Q: Jin earns \$12 an hour. She did 50min of work today. How much did she earn?

A: Jin earns 12/60 = 0.2 per minute. For 50 minutes, she earned $0.2 \times 50 = 10$.

Q: Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose?

A: (step-by-step solutions)

Teacher selection for math reasoning

(lots of teachers available)

- Datasets: GSM8K (left), MATH (right).
- Students: Llama-1B / OLMo-1B / Gemma-2B (GSM); Llama-3B (MATH).
 - Performance: average-at-16.
- Teachers: 15 models in Gemma, Llama, OLMo, Phi, Qwen (Math), at temperature [0.3,1].
 - Quality: **correlation** to & **regret** of average-at-16.

GRACE for LLM teacher selection

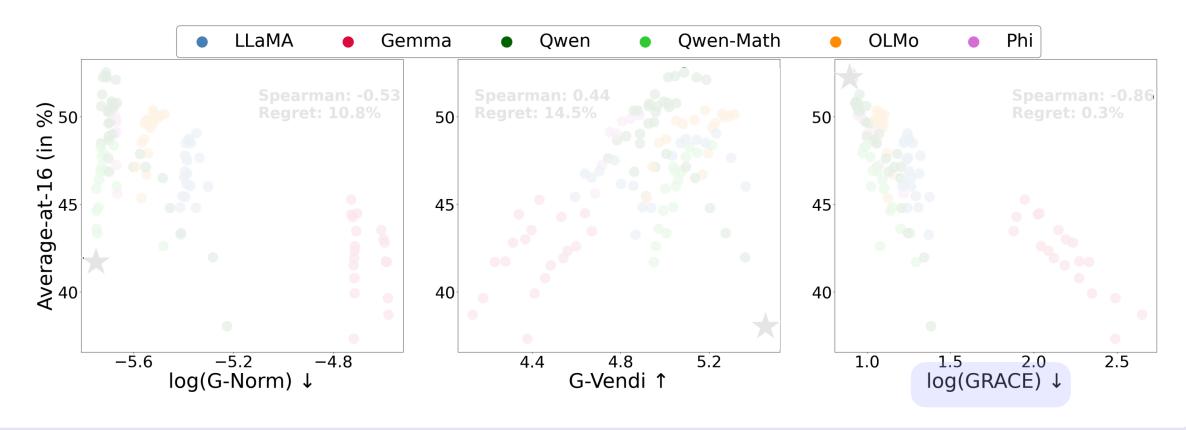
(GRAdient Cross-validation Evaluation)

$$\mathbf{GRACE}(D) := \hat{\mathbb{E}}_{D_1 \cup D_2 = D} \big[\mathrm{Tr} \big(\Sigma_1 \tilde{\Sigma}_2^{-1} \big) \big]$$

- 1) Inc
 - 1) Indicative of the student's performance.
 - 2) Informing distillation practices.

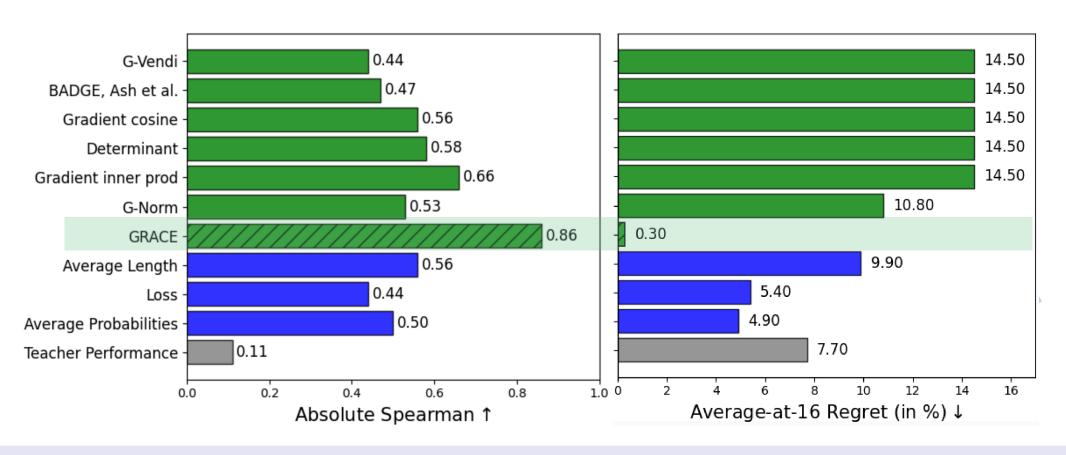
GRACE: high correlation, low regret.

LLaMA-1B on GSM8K *Similar results for other students and datasets (MATH and OOD).



GRACE: high correlation, low regret

LLaMA-1B on GSM8K *Similar results for other students and datasets (MATH and OOD).



GRACE for LLM teacher selection

(GRAdient Cross-validation Evaluation)

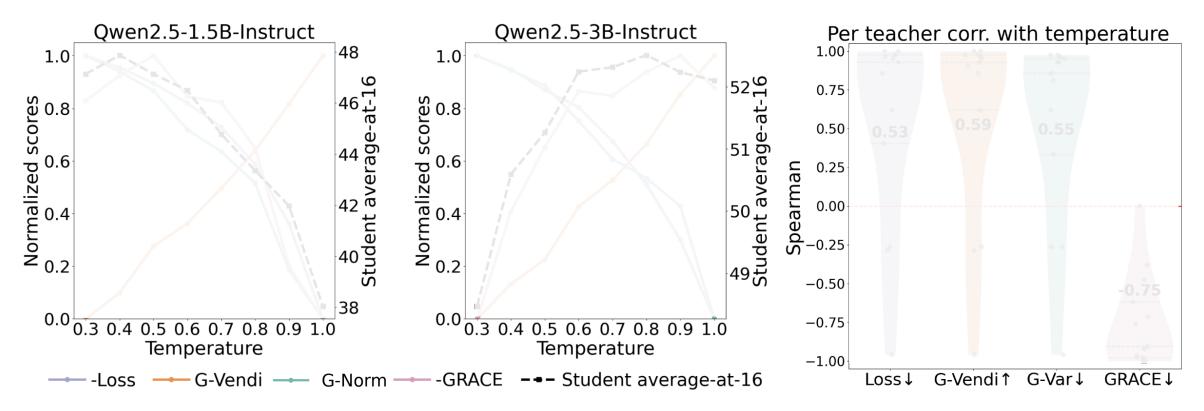
$$\mathbf{GRACE}(D) := \hat{\mathbb{E}}_{D_1 \cup D_2 = D} \big[\mathrm{Tr} \big(\Sigma_1 \tilde{\Sigma}_2^{-1} \big) \big]$$

- 1) Indicative of the student's performance.
- 2) Informing distillation practices.

temperature / size / family

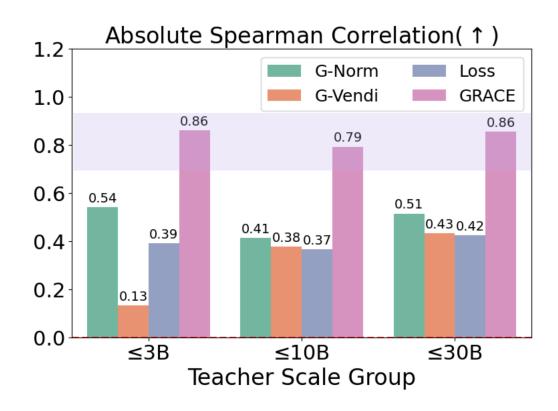
GRACE guides distillation practice

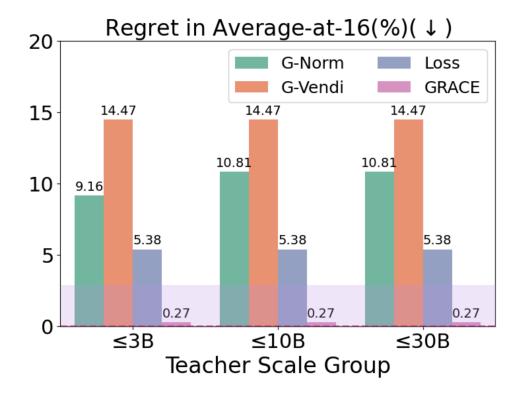
1. Selecting teacher generation temperature.



GRACE guides distillation practice

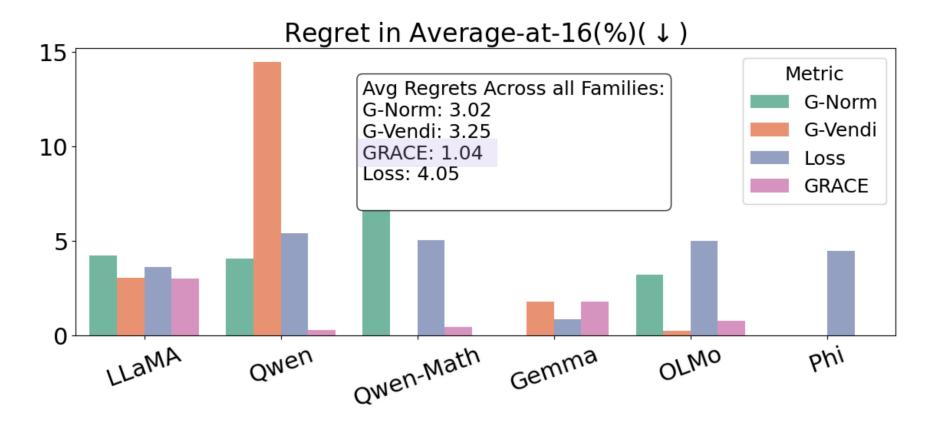
2. Selecting teacher under size constraints.





GRACE guides distillation practice

3. Selecting within a model family.

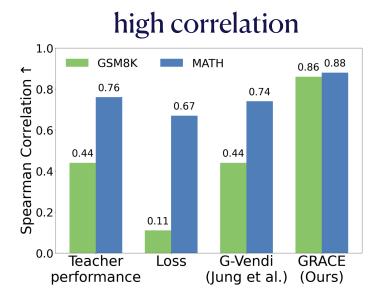


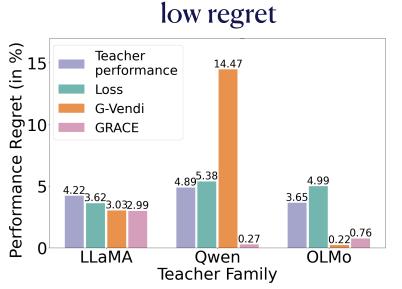
Part 2: teacher selection for LLM post-training

GRACE (~spectrum-weighted norm):

1) Reliably selecting a good teacher;

2) Informing distillation practices. (temperature / size / family)





Distilling from the right teacher

Progressive distillation: implicit curricula from intermediate checkpoints.

- Case study on sparse parity: improved sample complexity.
- Empirically verified on PCFG and language experiments.

GRACE for teacher selection: scoring teachers for LLM post-training.

- Indicative of student's performance ... high correlation, low regret.
- Guide design choices ... temperature, under size-constraints, within a family.

Takeaway: a lot to gain from distillation

Proper design choices matter: right teacher, algorithm, understanding.

Many interesting questions & connections.

- Learning with dense supervision / CoT [Joshi et al. 25, Kim et al. 25]
- RL: imitation learning / behavior cloning [Rohatgi et al. 25]
- Model stealing [<u>Liu & Moitra 24</u>]

Practical impact.

- Variants, e.g. on-policy distillation [Qwen 3, Thinking Machine blog].
- Weight distillation as better initialization [Bick et al. 24, Wang et al. 24].

Appendix

Thank you for wanting to know more:)

Better teacher --> better student

"capacity gap"

(due to differences in size / training steps)

Model	Dataset	BLKD	TAKD
CNN	CIFAR-10	72.57	73.51
	CIFAR-100	44.57	44.92
ResNet	CIFAR-10	88.65	88.98
	CIFAR-100	61.41	61.82
ResNet	ImageNet	66.60	67.36

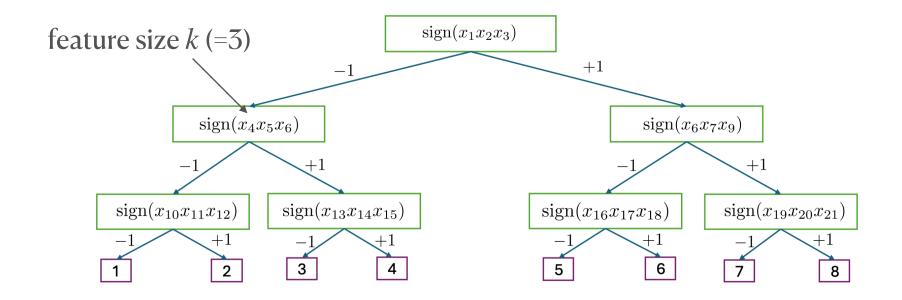
CIFA	CIFAR-100			
ResNet-56 \rightarrow LeNet-5x8	50.1 ± 0.4	61.9 ± 0.2		
ResNet-56 \rightarrow ResNet-20	68.2 ± 0.3	69.6 ± 0.3		
ResNet-110 \rightarrow LeNet-5x8				
$ResNet-110 \rightarrow ResNet-20$				

[Mirzadeh et al. 19]

[Harutyunyan et al. 23]

Beyond sparse parity — a hierarchical task

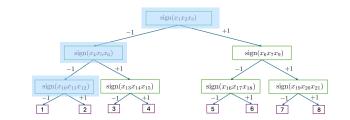
Hierarchical parity ... depth- $D \rightarrow 2^D$ -way classification.

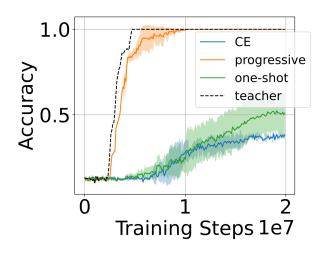


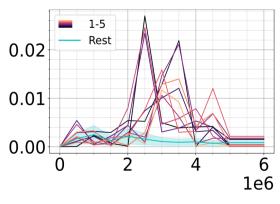
Beyond sparse parity — a hierarchical task

Hierarchical parity ... depth- $D \rightarrow 2^D$ -way classification.

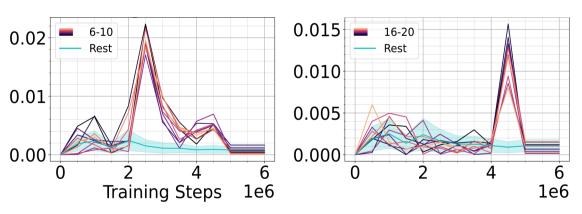
• Results on d = 100, D = 3, k = 5:







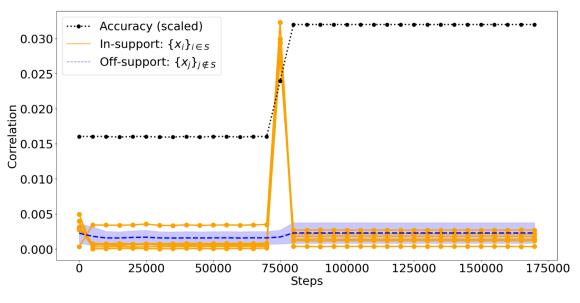
Corr. to degree-2 monomials

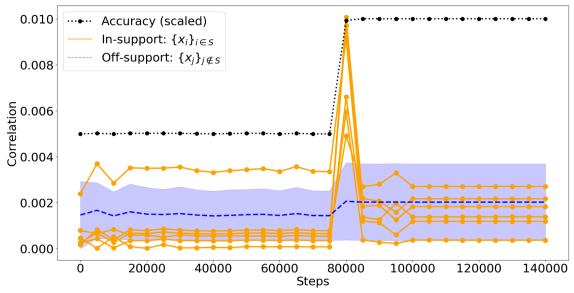


Learning at diff speed \rightarrow need multiple teachers.

Transformer on sparse parity

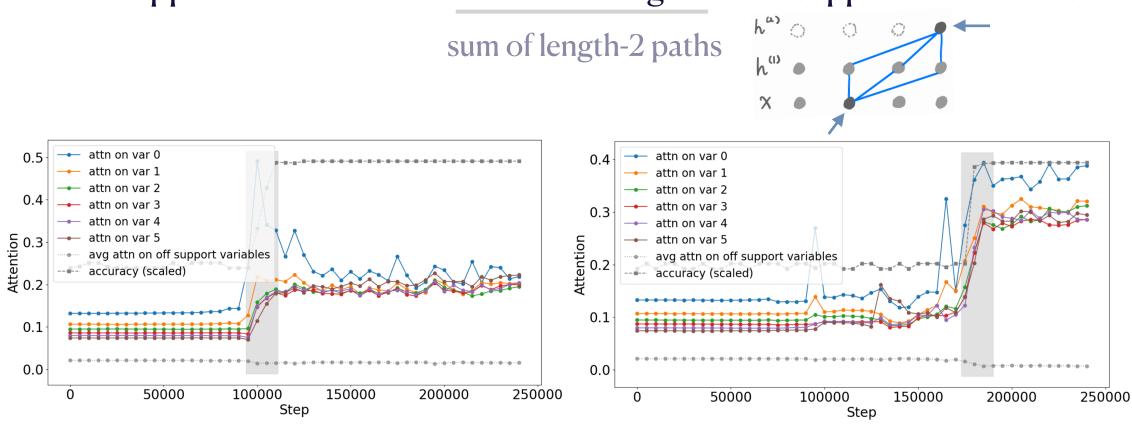
1. Implicit curriculum emerges: Higher $\hat{f}_{\{i\}}$ for $i \in S$.





Transformer on sparse parity

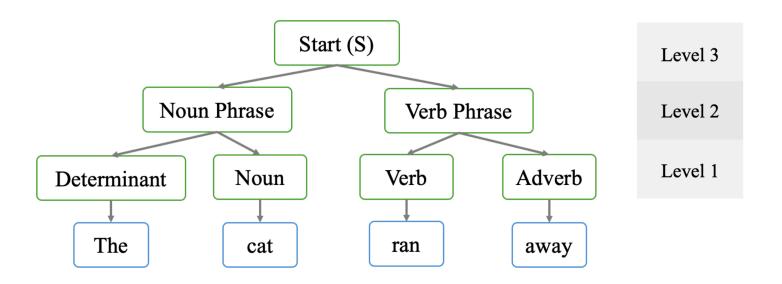
2. True support is learned: more attention weights on in-support coordinates.



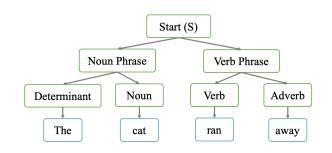
Beyond sparse parity — PCFG

Data: PCFG (probabilistic context-free grammar) [Allen-Zhu & Li 23]

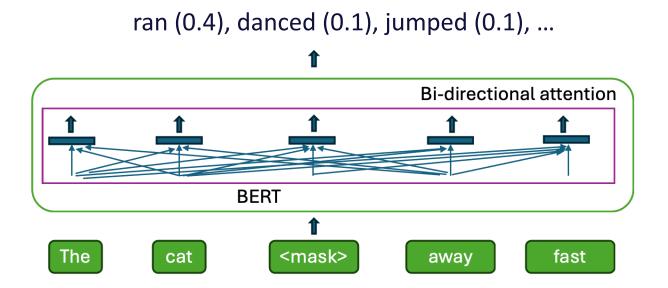
• Defined by: vocab; non-terminals; rules & probabilities.



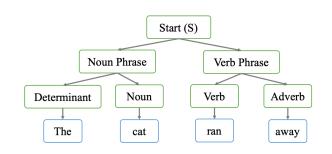
Beyond sparse parity — PCFG



Task: masked prediction ... loss averaged over the masked set.



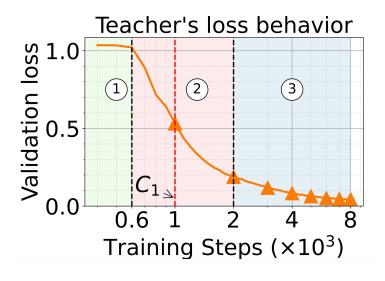
Beyond sparse parity — PCFG

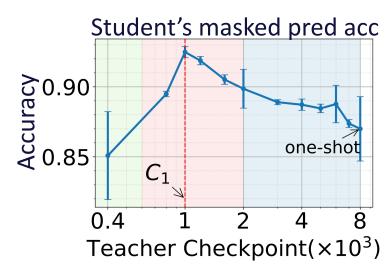


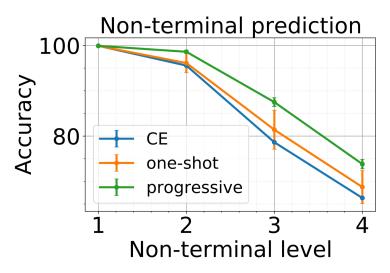
Task: masked prediction \rightarrow optimal: following the tree hierarchy [Zhao et al. 23].

a quality measure

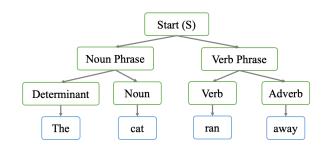
An implicit curriculum exists. ... what is it?







Implicit curriculum for PCFG



n-grams with an increasing n. (e.g. n=3: cat ran away, cat danced away, cat jumped away, ...)

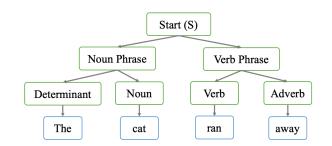
• Smaller *n* (more local/lower sensitivity) is easier [Abbe et al. 23,24; Vasudeva et al. 24].

2 measures for the dependency on *n*-grams:

• $M_{\text{robust}} = \text{TV}(p(x_{\setminus \{i\}}), p(x_{\setminus n\text{-gram}(i)}))$

- The cat ____ ?_ ___ after hearing...
- "All but n-gram": smaller \rightarrow the prediction depends less on n-gram.
- $M_{\text{close}} = \text{TV}(p(x_{\{i\}}), p(x_{n-\text{gram}(i)\setminus\{i\}}))$ ____ ran _?_ away _____...
 - "Only *n*-gram": smaller \rightarrow the prediction is closer to a *n*-gram model.

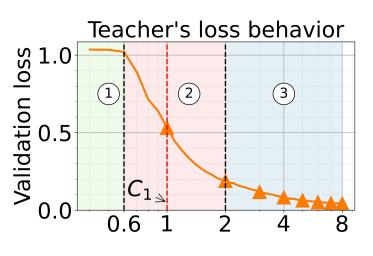
Implicit curriculum for PCFG

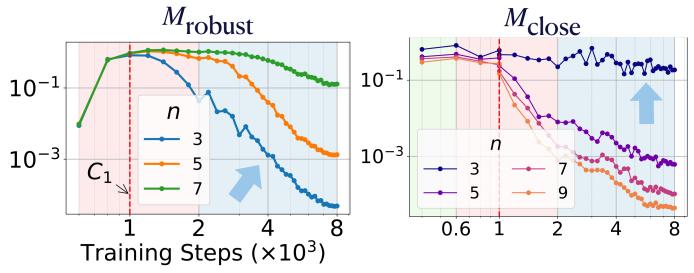


n-grams with an increasing n.

• Smaller *n* (more local/lower sensitivity) is easier [Abbe et al. 23,24; Vasudeva et al. 24].

2 measures: later checkpoints depend more on higher *n* (i.e. harder).

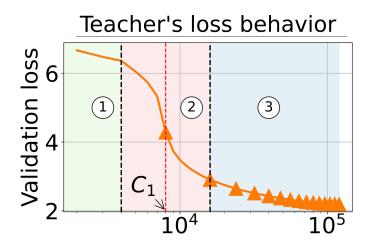


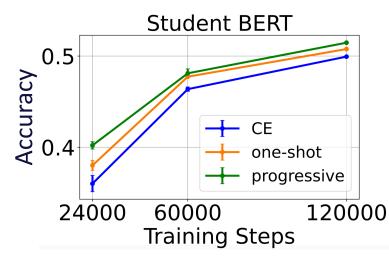


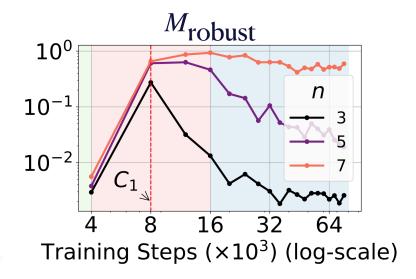
Natural languages

Masked prediction on Wikipedia and Books.

• Similar results for next-token prediction.







GRACE: gradient norm, weighted by the spectrum of normalized gradients.

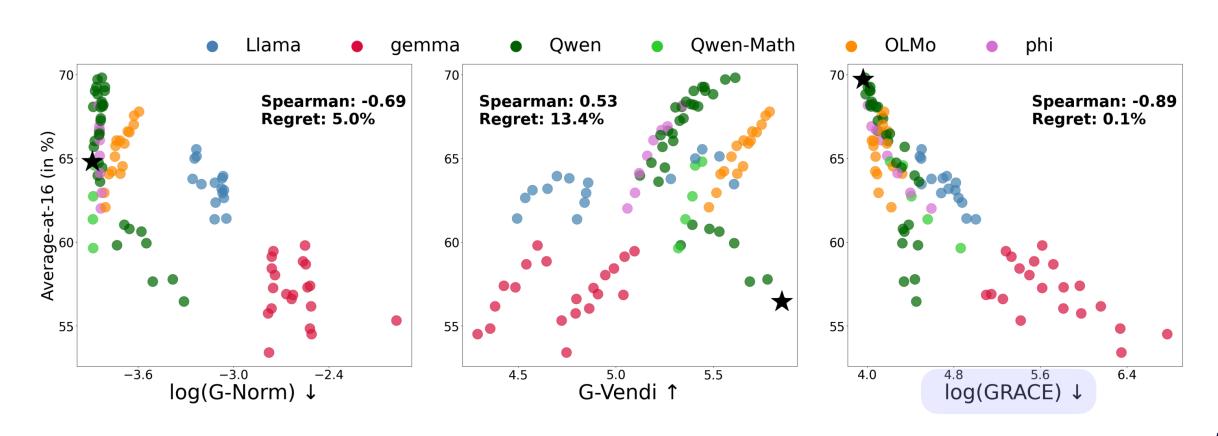
$$\mathbf{GRACE}(D) := \hat{\mathbb{E}}_{D_1 \cup D_2 = D} \big[\mathrm{Tr} \big(\Sigma_1 \tilde{\Sigma}_2^{-1} \big) \big]$$

Example:

- Random generations: high G-Norm \downarrow and GRACE \downarrow (but high G-Vendi \uparrow).
- Always the same generation: high G-Norm ↓ and GRACE ↓.
- Extreme (random) repetitions: low G-Norm ↓ and GRACE ↓.

GRACE indicative of math performance

Gemma-2B on GSM8K: high correlation \uparrow , low regret \downarrow .



GRACE indicative of math performance

Llama-3B on MATH: high correlation ↑, low regret ↓.

