

ICLR2025

Improving training with progressive distillation

Abhishek Panigrahi

Sadhika Malladi

Andrej Risteski

Surbhi Goel

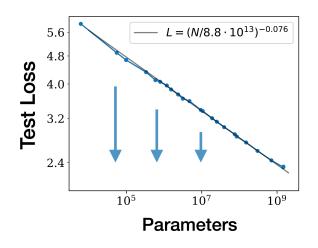
Bingbin Liu CMU → Simons → Kempner

Challenges mainly in training, rather than capacity/expressivity.

e.g. $\Omega(\log T)$ layers [Merrill & Sabharwal 22].

context length $T = 10^6 \rightarrow ~20$ layers $\ll ~100$ layers in practice.

• Other tricks available, e.g. Chain-of-Thought [Li et al. 24].



Train small models better, given big pretrained models?

model compression

e.g. distillation, quantization, pruning

	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench
Model	pass@1	cons@64	pass@1	pass@1	pass@1
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2

[DeepSeek R1 report]

Train small models better, given big pretrained models?

via distillation

Benefit: improved efficiency.

• Inference: lower compute cost, while remaining performant.

Train small models better, given big pretrained models?

via distillation

Benefit: improved efficiency.

• Training: fewer samples (statistical) / steps (computational).

System & training set	Train Frame Accuracy	Test Frame Accuracy
Baseline (100% of training set)	63.4%	58.9%
Baseline (3% of training set)	67.3%	44.5%
Soft Targets (3% of training set)	65.4%	57.0%

[<u>Hinton et al. 15</u>]

Distillation for better training

ICLR2025

Background: what & how to distill.

• Explanation: generalization benefit... limited understanding about training.

Our work: better training via progressive distillation.

- · Via an "implicit curriculum."
- Case study (sparse parity) + empirical verification.

Future directions

What is knowledge distillation?

Training a "student" model to match a (trained) "teacher" model.

· Classification, matching outputs (class distributions):

$$L_D(f(x), f_T(x)) = KL(f_T(x)||f(x)). \quad f_T(x), f(x) \in \Delta^{C-1}$$

Recall: learning from data:

$$L_{CE}(f(x), y) = -\log[f(x)]_y = KL(\delta_y||f(x)).$$

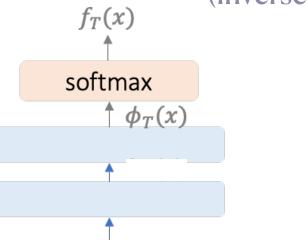
In practice, often use both: $\alpha L_{CE} + (1 - \alpha)L_D$.

What is knowledge distillation?

Training a "student" model using a (trained) "teacher" model.

- · Classification: matching teacher's output (e.g. class distributions).
- Distribution given by the softmax: $[f(x)]_i \propto \exp(\tau^{-1} \cdot [\phi(x)]_i)$.

(inverse) temperature



What is knowledge distillation?

Training a "student" model using a (trained) "teacher" model.

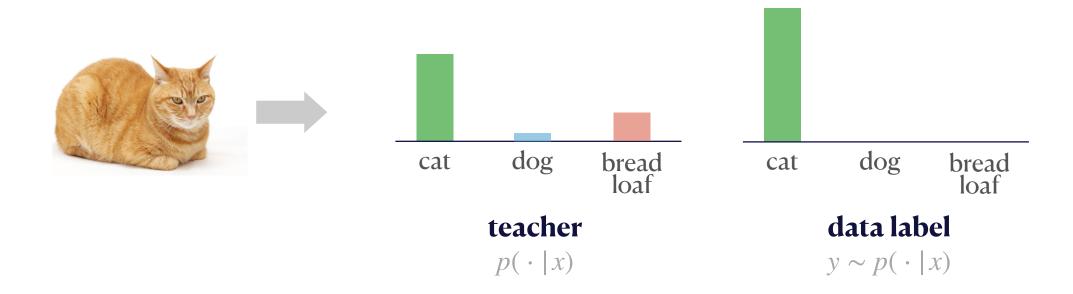
- · Classification: matching teacher's output (e.g. class distributions).
- Distribution given by the softmax: $[f(x)]_i \propto \exp(\tau^{-1} \cdot [\phi(x)]_i)$.
- * Distillation is fairly general:
- Big/strong teacher → small/weak student. (today's focus)
- Small/weak teacher → big/strong student (e.g. weak-to-strong)
- Self-distillation (same-sized), many-to-one, ...

Why is distillation helpful?

 $loss = KL(f_T(x)||f(x))$

Intuitively: "richer information" ... full distribution vs a sample.

• An ideal teacher: $f_T(x) = p^*(y|x)$.



Why is distillation helpful?

 $loss = KL(f_T(x)||f(x))$

Intuitively: "richer information" ... full distribution vs a sample.

Better generalization: $p^*(\cdot | x)$ leads to a tighter bound [Menon et al. 20].

• Imperfect teacher: bias-variance tradeoff.

Why is distillation helpful?

 $loss = KL(f_T(x)||f(x))$

Intuitively: "richer information" ... full distribution vs a sample.

Better generalization: $p^*(\cdot | x)$ leads to a tighter bound [Menon et al. 20].

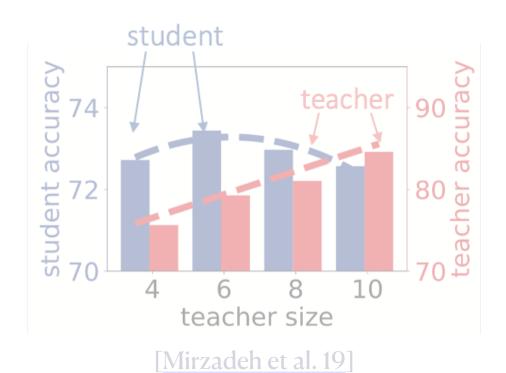
• Imperfect teacher: bias-variance tradeoff.

Not the full story — cannot explain:

- Benefit when p^* is a delta mass? ... i.e. labels = ideal teacher; e.g. sparse parity.
- Better (closer to p^*) teacher \rightarrow better student?

Better teacher --> better student

"capacity gap"
(when the teacher is too big / performant)



teacher

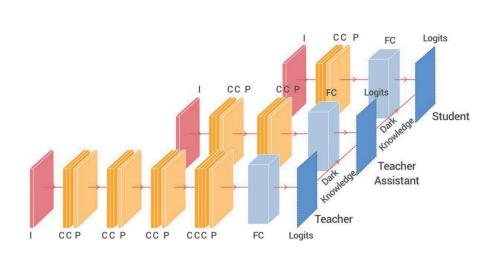
[Harutyunyan et al. 23]

Better teacher --> better student

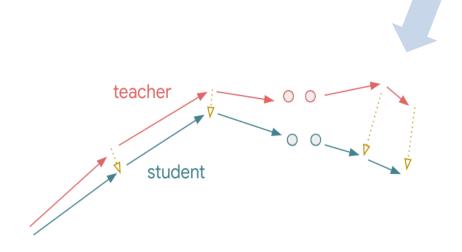
"capacity gap"

(when the teacher is too big / performant)

Bridging the gap with intermediate sizes/steps.



[<u>Mirzadeh et al. 19</u>]

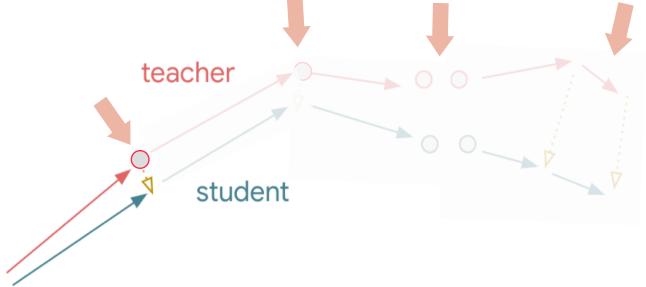


[Harutyunyan et al. 23]

Progressive distillation

Def: student distills sequentially from multiple teacher checkpoints.

• (1-shot) distillation uses the final checkpoint only.



Used in practice: e.g. Gemini-1.5 Flash (from Gemini-1.5 Pro) [Reid et al. 24].

Benefit of progressive distillation?

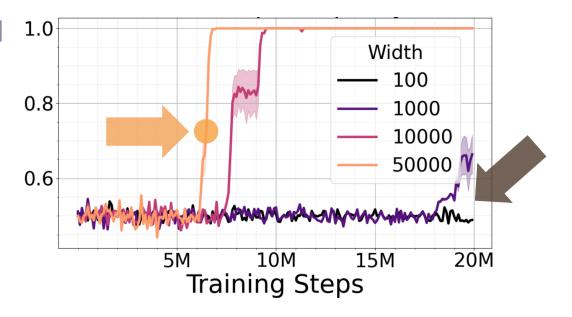
[Harutyunyan et al. 23]: smaller gap \rightarrow better generalization (upper) bounds.

Our work: progressive distillation for faster training.

- Case study: sparse parity ... prior theory fails to explain the gain.
- Theoretical explanation: reduced sample complexity.
- Empirical validation & more realistic settings (formal and natural languages).

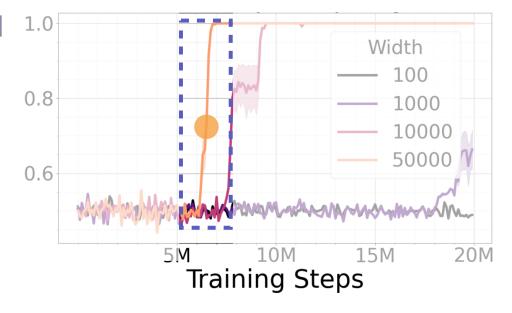
Case study: sparse parity

- Bigger model trains faster. [Edelman et al. 23]
 - SQ lower bound d^k [Kearns 98]
- Our work: Smaller models train as fast, when using intermediate checkpoints.

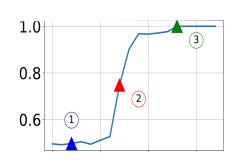


Case study: sparse parity

- Bigger model trains faster. [Edelman et al. 23]
 - SQ lower bound d^k [Kearns 98]
- Our work: Smaller models train as fast, when using intermediate checkpoints.



Why intermediate teacher matters?



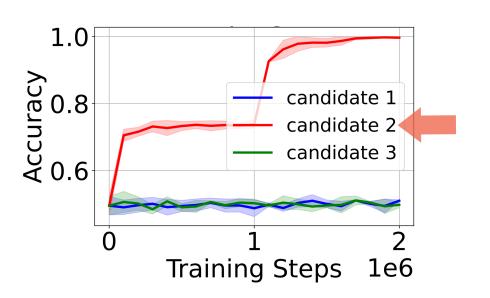
Setup: 2-shot: using 1 intermediate teacher + the final teacher.

Compare 3 teacher checkpoints: before / during / after the phase transition.

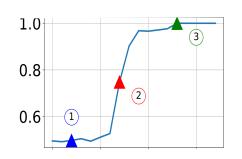
(1)

(2)

3



Why intermediate teacher matters?

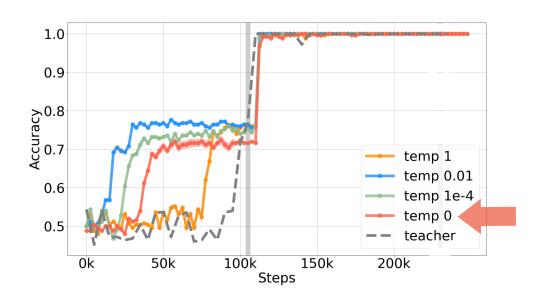


Setup: 2-shot: using 1 intermediate teacher + the final teacher.

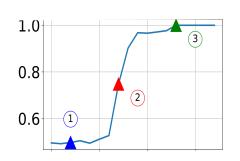
Compare 3 teacher checkpoints: before / during / after the phase transition.

Not due to "full distribution/soft labels": even one-hot supervision is helpful.

- Achieved with a smaller τ .
- Recall: $[f(x)]_i \propto \exp(\tau^{-1} \cdot [\phi(x)]_i)$.



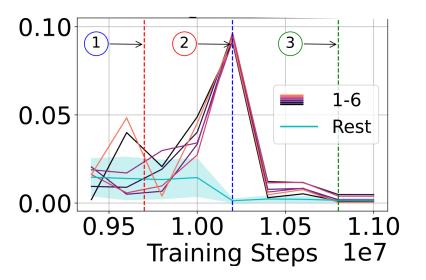
Why intermediate teacher matters?



Setup: 2-shot: using 1 intermediate teacher + the final teacher.

Compare 3 teacher checkpoints: before / during / after the phase transition.

True reason: "extra training signals" — Implicit curriculum (certain Fourier coefficients)



Implicit curriculum accelerates training

Case study with sparse parity: speedup from "extra training signals."

- What are the signals? ... Fourier coefficients.
- Why are they helpful? ... Lower degree → reduced sample complexity.
- How do they emerge in the teacher? ... Initial population gradient.

(Empirical validation)

Setup

Target:
$$(d, k)$$
-sparse parity: $y = \prod_{i \in S} x_i, x \in \{\pm 1\}^d, |S| = k$.

Model: 2-layer MLP:
$$f(x) = \sum_{j \in [m]} a_j \cdot \text{ReLU}(\langle w_j, x \rangle + b_j).$$

Correlation loss
$$\mathcal{E}(f(x), y) = -f(x) \cdot y$$
 or $f_T(x)$ for the student.

- Teacher: 2-phase: 1) one step with a large batch; 2) online SGD.
- Student: 2-shot distillation, from the end of each phase.

What signals: certain Fourier coeffs

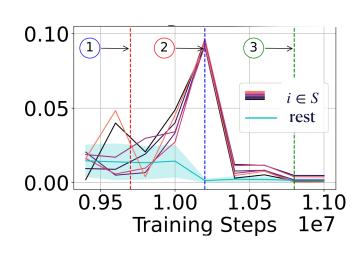
Recall: Fourier coefficients: $\hat{f}_{\tilde{S}}(f) = \langle \chi_{\tilde{S}}, f \rangle = \mathbb{E}_{x}[\chi_{\tilde{S}}(x) \cdot f(x)].$

• (Fourier basis)
$$\chi_{\tilde{S}}(x) := \prod_{i \in \tilde{S}} x_i$$
, for $\tilde{S} \subset [d]$ natural for parity: $y = \chi_S$

Our focus: $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in [d]$).

• Checkpoint 2:
$$f_T(x) \approx \sum_{i \in S} c_i x_i$$

helpful "extra signal"



Why implicit curriculum accelerates training

Fewer samples to learn lower-degree monomials [Edelman et al. 22, Abbe et al. 23].

- Learning from $y = \chi_S(x) \to \Omega(d^{k-1})$ samples.
- Learning from $\sum_{i \in S} c_i \chi_{\{i\}} \to O(d^2)$ samples. $\tilde{O}_{k,\epsilon}(d^2)$ for 2-shot distillation.
- **2-shot distillation**: 1) learn *S* from $\sum_{i \in S} c_i \chi_{\{i\}}$; 2) compute χ_S given *S*.

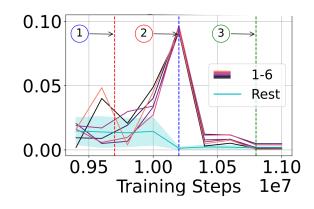
How implicit curriculum arises

Initial population gradient reveals S [Edelman et al. 22].

- Consider a single neuron $w \in \mathbb{R}^d$, its gradient coordinates satisfy
 - Intuition: $|g_j|$ depends on $\hat{f}_{S\setminus\{i\}}$ or $\hat{f}_{S\cup\{j\}}$.

$$(\gamma_k : \text{Fourier gap}) \quad |g_i| \ge |g_j| + \gamma_k, i \in S, j \notin S.$$

In support → large gradients



Implicit curriculum accelerates learning

Case study with sparse parity: speedup from "extra training signals."

- What the curriculum is: deg-1 monomials, i.e. x_i , $i \in S$.
- Why it is helpful: sample complexity $\Omega(d^{k-1}) \to \tilde{\Theta}_{k,\epsilon}(d^2)$.
- How it emerges: initial *population gradient* reveals the support.

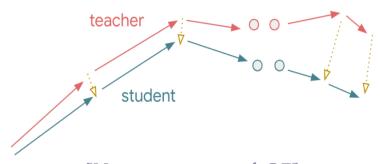
Implicit curriculum: a helpful decomposition.

Experiments

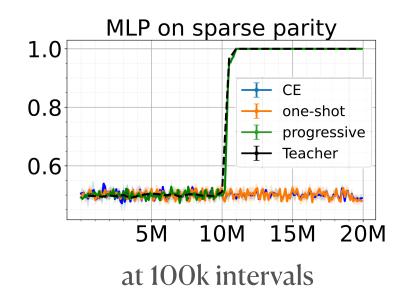
Implicit curriculum for parity and formal/natural languages

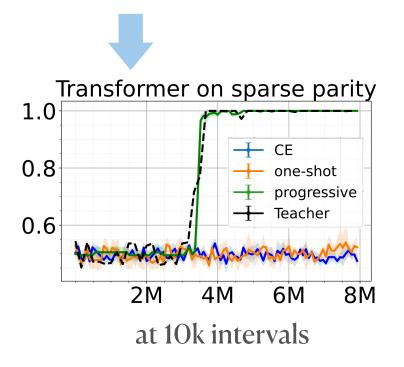
Progressive distillation

Teacher at fixed intervals (rather than 2-shot).



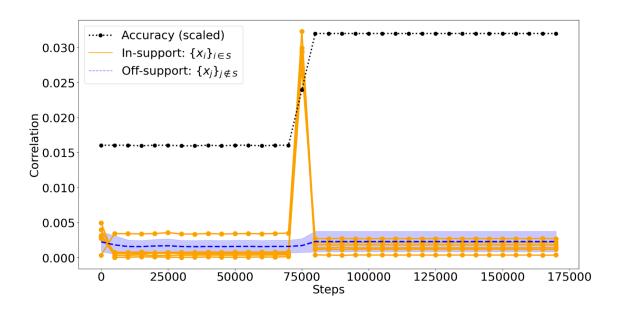
[Harutyunyan et al. 23]





Transformer on sparse parity

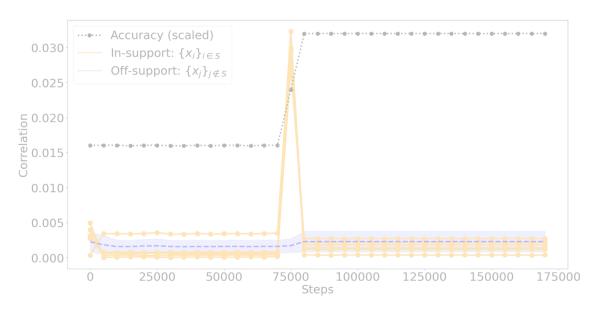
1. Implicit curriculum emerges: Higher $\hat{f}_{\{i\}}$ for $i \in S$.

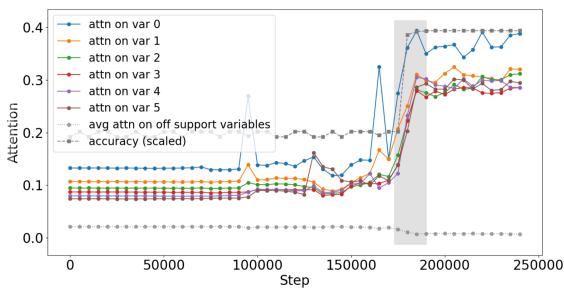


Transformer on sparse parity

1. Implicit curriculum emerges: Higher $\hat{f}_{\{i\}}$ for $i \in S$.

2. More attention weight on S.

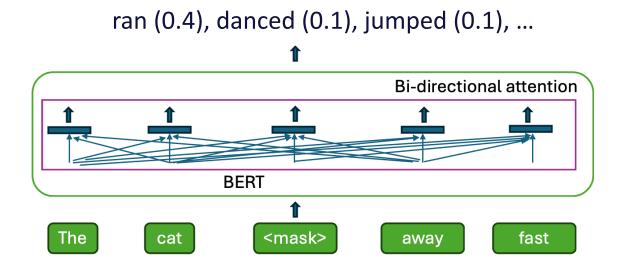




Beyond sparse parity — formal languages

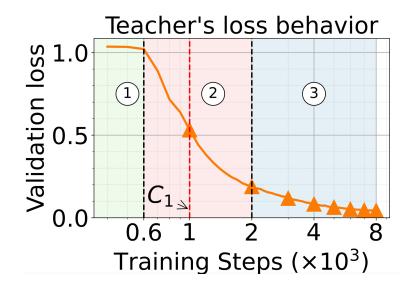
Masked prediction on **PCFG**.

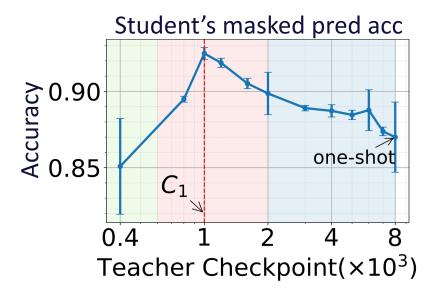
(probabilistic context-free grammar, e.g. [Allen-Zhu & Li 23])



Beyond sparse parity — formal languages

Masked prediction on PCFG: intermediate checkpoint helps.

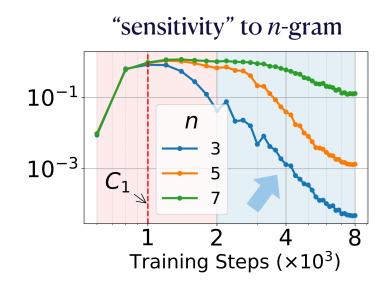


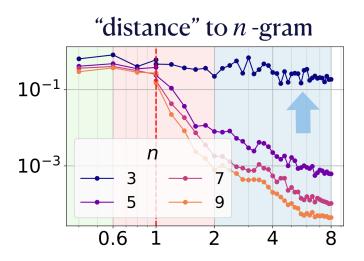


Beyond sparse parity — formal languages

Masked prediction on PCFG: an implicit curriculum exists.

n-gram curriculum with an increasing *n*.



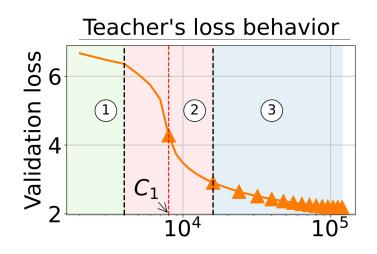


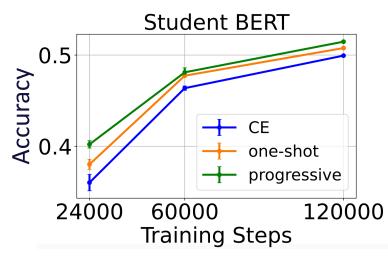
Larger *n* (higher sensitivity/more global) is harder to learn [Abbe et al. 23,24; Vasudeva et al. 24].

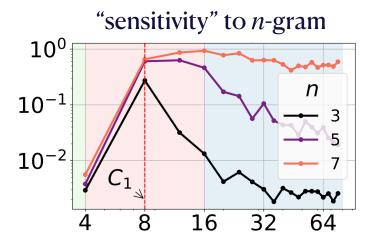
Beyond sparse parity — natural languages

n-gram curriculum for Wikipedia and Books:

• Similar results for masked prediction and next-token prediction.







Progressive distillation accelerates training

(Prior work: *generalization* benefits from full distribution/soft logits)

Intermediate checkpoints provide an implicit curriculum.

- Explains why better teacher \leftrightarrow better student ("capacity gap").
- Case study on sparse parity: a *low-degree curriculum* \rightarrow improved sample complexity.
 - Analysis: larger Fourier coefficients on $\{i\}$, $i \in S$.
 - Generalization: hierarchical parity.
- Generalizing to PCFG & natural languages: *n-gram curriculum*.

ICLR2025

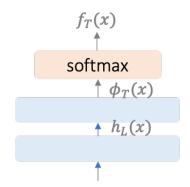
Future Directions

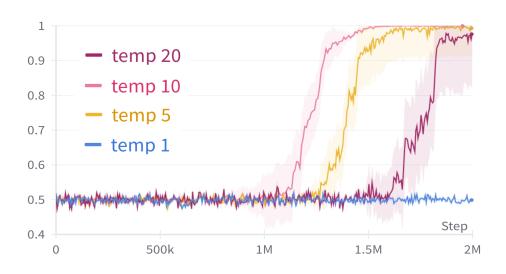
Fewer teachers? For generation? As initialization?

1. Curriculum from a single teacher?

Remove the need to access/store intermediate checkpoints. (e.g. 2-shot for parity)

- · A follow-up work: layerwise distillation [Gupta & Karmalkar 25].
- High temperature for the final teacher (a different mechanism?)



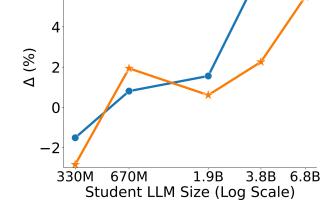


2. Progressive distillation for generations?

Using intermediate teachers for a generative setup (e.g. languages)?

Not straightforward, based on initial results; though capacity gap does exist.

Method	BERT _{base}	BERT _{large}	Δ
Teacher	86.7	88.3	+1.6
KD _{10%/5%} (2015)	81.3	80.8	-0.5
DynaBERT _{15%/5%} (2020)	81.1	79.2	-1.9
MiniDisc _{10%/5%} (2022a)	82.4	82.1	-0.3
TinyBERT _{4L;312H} (2020)	82.7	82.5	-0.2
MiniLM _{3L;384H} (2021b)	82.5	82.0	-0.5
MiniMoE _{3L;384H} (ours)	82.6	83.1	+0.5



GLM-4-32B

[Zhang et al. 23]

[Peng et al. 24]

2. Progressive distillation for generations?

Using intermediate teachers for a generative setup (e.g. languages)?

- Not straightforward, based on initial results; though capacity gap does exist.
- Many considerations:
 - Texts or logits (large | ¾ |)?
 - Format (e.g. CoT)?
 - Teacher-student "alignment/coverage"?

 [Phuong & Lampert 19, Ji & Zhu 20, Harutyunyan et al. 23, Huang et al. 25]

3. Distillation for better initialization?

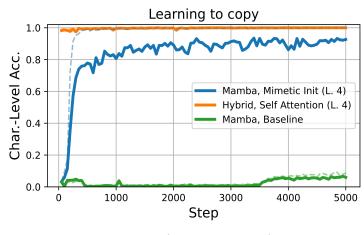
Across model classes, e.g. Transformer to state-space model (SSM) / hybrids.

Model	Avg. ↑	
Phi-1.5-1.3B	64.9	
Phi-Mamba-1.5B	62.6	
Phi-Mamba-1.5B Mamba-1-1.4B	62.6 59.7	

[Bick et al. 24]

Model (% Att)	AlpacaEval (win %)
Llama-3-Instruct Mamba-Llama3 (50%) Mamba-Llama3 (25%)	22.60 _{1.26} 26.69 _{1.31}
Mamba-Llama3 (25%) Mamba-Llama3 (12.5%)	$22.50_{1.26} \\ 17.93_{1.16}$

[Wang et al. 24]



[Trockman et al. 24]

Goal: progress without massive compute

Train small models better, given big pretrained models?

Distillation for better efficiency.

- Training: fewer samples (statistical) / steps (computational).
- <u>Inference</u>: lower cost enabled by performant *small* models.

Progressive distillation accelerates training

(Prior work: *generalization* benefits from full distribution/soft logits)

Intermediate checkpoints provide an implicit curriculum.

- Explains why better teacher \leftrightarrow better student ("capacity gap").
- Case study on sparse parity: a *low-degree curriculum* \rightarrow improved sample complexity.
 - Analysis: larger Fourier coefficients on $\{i\}$, $i \in S$.
 - Generalization: hierarchical parity.
- Generalizing to PCFG & natural languages: *n-gram curriculum*.

ICLR2025

Appendix

Thank you for wanting to know more!:)

Why is distillation helpful?

$$loss = KL(f_T(x)||f(x))$$

Intuitively: "richer information" ... full distribution vs a sample.

Better generalization: $p^*(\cdot | x)$ leads to a tighter bound [Menon et al. 20].

- Imperfect teacher: bias-variance tradeoff.
- "Teacher-free" via label smoothing $(f_T(x) = (1 \alpha)e_y + \frac{\alpha}{L}\mathbf{1})$ [Yuan et al. 19].

Model	Baseline	$Tf ext{-}KD_{reg}$	Normal KD [Teacher]
MobileNetV2	68.38	70.88 (+2.50)	71.05 (+2.67) [ResNet18]
ShuffleNetV2	70.34	72.09 (+1.75)	72.05 (+1.71) [ResNet18]
ResNet18	75.87	77.36 (+1.49)	77.19 (+1.32) [ResNet50]
GoogLeNet	78.15	79.22 (+1.07)	78.84 (+0.99) [ResNeXt29]

Signals: Fourier coefficients on $x_i, x \in [S]$

Our focus: $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in [d]$).

• How: population gradient at initialization [Edelman et al. 22]. Consider a single neuron $w \in \mathbb{R}^d$:

$$f(x) = \sigma(w^{T}x + b)$$
$$l(y, y') = -yy'$$

$$-\widehat{\text{LTF}}_{S'} \leftarrow g_i := (\nabla_w \mathbb{E}_x[l(y, f(x; w)])_i = -\nabla_w \mathbb{E}_x[1[w^\top x + b \ge 0] \cdot yx_i]$$

$$= -\mathbb{E}_x[1[w^\top x + b \ge 0] \cdot (\prod_{j \in S} x_j) \cdot x_i]$$

$$\text{Fact: } |\widehat{\text{LTF}}_{S_1}| > |\widehat{\text{LTF}}_{S_2}|$$

$$\text{for odd } |S_1|, |S_2| \text{ s.t. } |S_1| < |S_2|.$$

$$S' = S \setminus \{i\} \text{ (if } i \in S) \text{ or } S \cup \{i\} \text{ (if } i \notin S)$$

Signals: Fourier coefficients on $x_i, x \in [S]$

Our focus: $\hat{f}_{\tilde{S}}$, for singleton \tilde{S} (i.e. $\{i\}, i \in [d]$).

• How: population gradient at initialization [Edelman et al. 22].

Consider a single neuron $w \in \mathbb{R}^d$:

$$f(x) = \sigma(w^{\mathsf{T}}x + b)$$
$$l(y, y') = -yy'$$

$$-\widehat{\mathsf{LTF}}_{S'} \leftarrow g_i := (\nabla_w \mathbb{E}_x[l(y, f(x; w)])_i = -\nabla_w \mathbb{E}_x[1[w^\top x + b \ge 0] \cdot yx_i] \quad \text{(Fourier gap)}$$

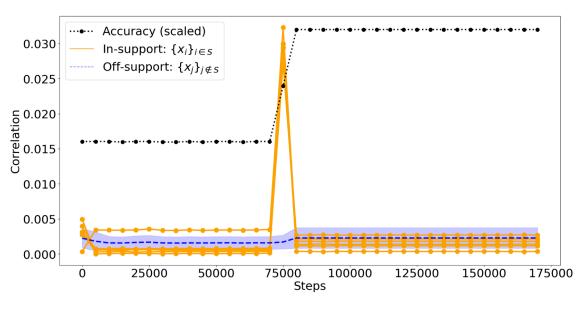
$$= -\mathbb{E}_x[1[w^\top x + b \ge 0] \cdot (\prod_{j \in S} x_j) \cdot x_i] \quad \text{|} \quad |g_i| \ge |g_j| + \gamma_k, i \in S, j \notin S.$$

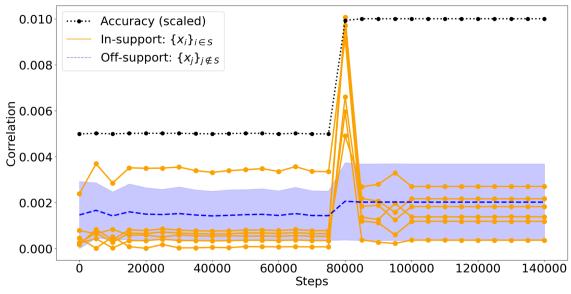
$$|\mathsf{LTF}_{S_1}| > |\widehat{\mathsf{LTF}}_{S_2}| \quad \mathsf{large gradients} \to \mathsf{support}$$

$$\mathsf{Fact:} |\widehat{\mathsf{LTF}}_{S_1}| > |\widehat{\mathsf{LTF}}_{S_2}| \quad \mathcal{X}_{S'}, \ S' = S \setminus \{i\} \ (\mathsf{if} \ i \in S) \ \mathsf{or} \ S \cup \{i\} \ (\mathsf{if} \ i \notin S)$$

Transformer on sparse parity

1. Implicit curriculum emerges: Higher $\hat{f}_{\{i\}}$ for $i \in S$.

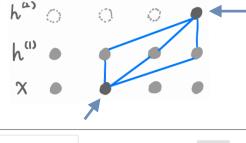


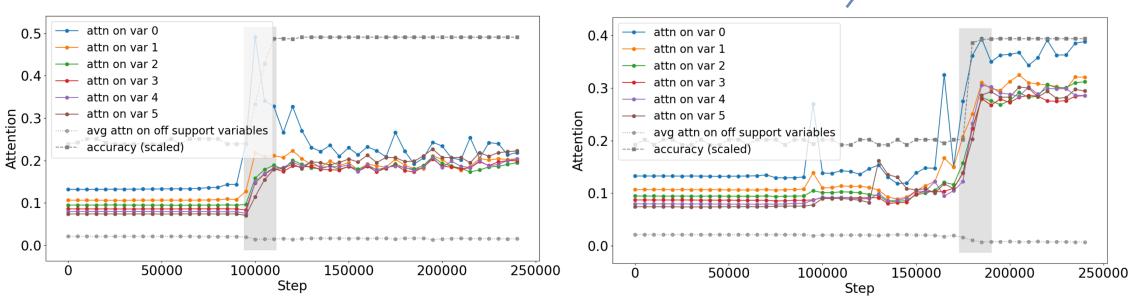


Transformer on sparse parity

2. **True support** is learned: more attention weights on in-support coordinates.

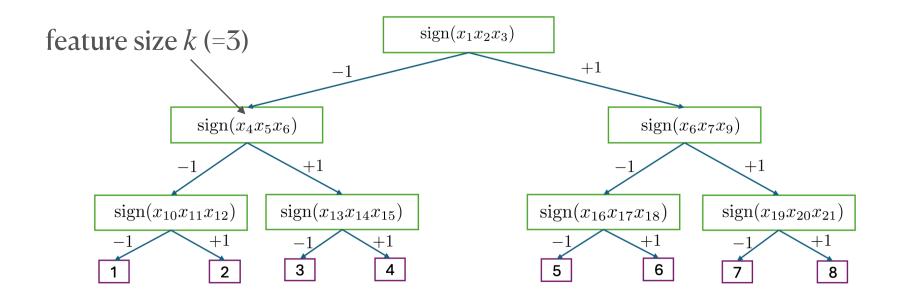
sum of length-2 paths





Beyond sparse parity — a hierarchical task

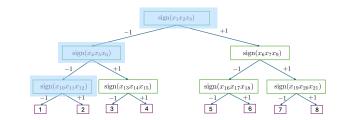
Hierarchical parity ... depth- $D \rightarrow 2^D$ -way classification.

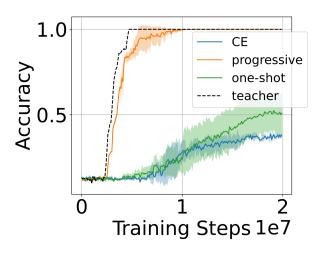


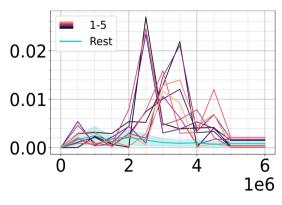
Beyond sparse parity — a hierarchical task

Hierarchical parity ... depth- $D \rightarrow 2^D$ -way classification.

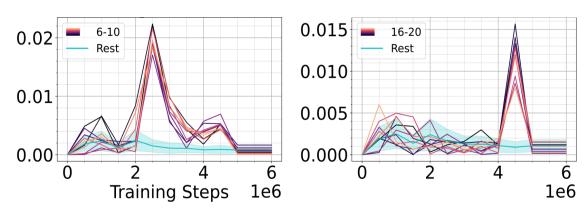
• Results on d = 100, D = 3, k = 5:







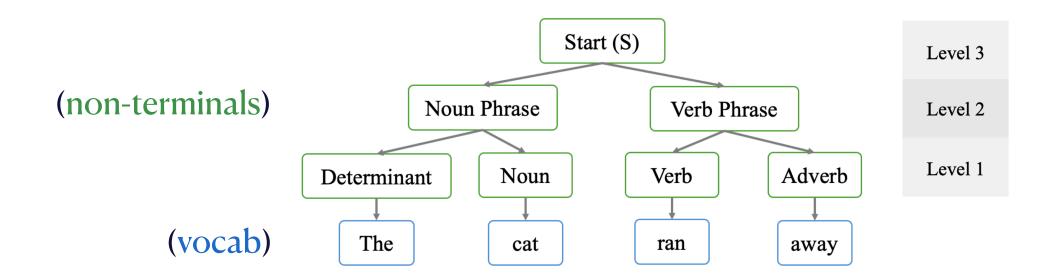
Corr. to degree-2 monomials



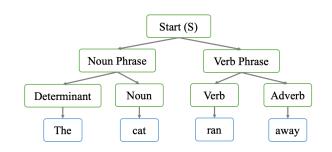
Learning at diff speed \rightarrow *need multiple teachers.*

Beyond sparse parity — formal languages

Data: PCFG (probabilistic context-free grammar) [Allen-Zhu & Li 23]



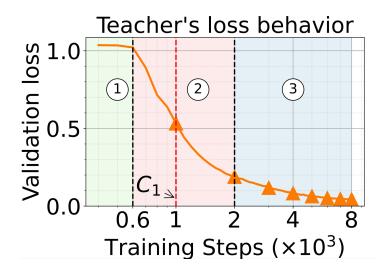
Beyond sparse parity — PCFG

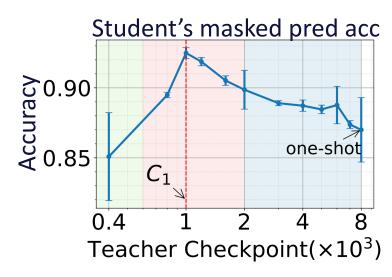


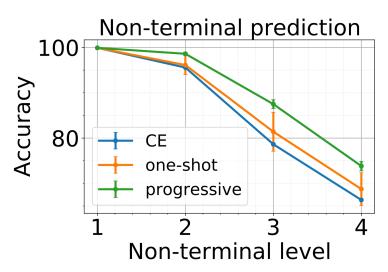
Task: masked prediction \rightarrow optimal: following the tree hierarchy [Zhao et al. 23].

a quality measure

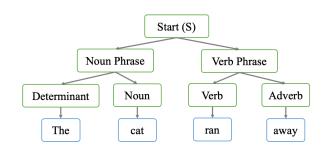
An implicit curriculum exists. ... what is it?







n-gram curriculum for PCFG



n-grams with an increasing n. (e.g. n=3: cat ran away, cat danced away, cat jumped away, ...)

• Smaller *n* (more local/lower sensitivity) is easier [Abbe et al. 23,24; Vasudeva et al. 24].

2 measures for the dependency on *n*-grams:

• $M_{\text{robust}} = \text{TV}(p(x_{\setminus \{i\}}), p(x_{\setminus n\text{-gram}(i)}))$

- The cat ____ ?_ ___ after hearing...
- "All but n-gram": smaller \rightarrow the prediction depends less on n-gram.
- $M_{\text{close}} = \text{TV}(p(x_{\{i\}}), p(x_{n-\text{gram}(i)\setminus\{i\}}))$ ____ ran _?_ away _____...
 - "Only *n*-gram": smaller \rightarrow the prediction is closer to a *n*-gram model.