Transformers Learn Shortcuts to Automata

https://arxiv.org/abs/2210.10749

Bingbin

Jordan T. Ash

Surbhi Goel

Akshay Krishnamurthy

Cyril Zhang

Algorithmic reasoning

Want to understand the reasoning capabilities & internal mechanisms of self-attention models.

Question: Assume that the variance of the first n natural numbers is 10, and the variance of the first m even natural numbers is 16. Compute m+n.

Model output: Let σ^2 be the variance of the first m even natural numbers, and τ^2 be the variance of the first n natural numbers. Then, we have $\tau^2 = \frac{n^2-1}{12}$ and $\sigma^2 = \frac{m^2-1}{3}$. We solve the system of equations: $\frac{n^2-1}{12} = 10$ $\frac{m^2-1}{3} = 16.$ This translates into the system $n^2 = 121$ $m^2 = 48 + 1 = 49.$ Therefore, n = 11 and m = 7, so n + m = 18.

```
Question: For every a,b,b\neq a prove that \frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2. Model output: \frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2 \\ \Leftrightarrow \frac{a^2+b^2}{2} > \frac{a^2+b^2+2ab}{4} \\ \Leftrightarrow a^2+b^2 > \frac{a^2+b^2+2ab}{2} \\ \Leftrightarrow 2a^2+2b^2 > a^2+b^2+2ab \\ \Leftrightarrow a^2+b^2 > 2ab \\ \Leftrightarrow a^2+b^2 > 2ab > 0 \\ \Leftrightarrow (a-b)^2 > 0 which is true, because the square of a real number is positive.
```

Math: Minerva (Lewkowycz et al. 22)

Code: Codex / Copilot (Chen et al. 21)

```
Input:
2 9 + 5 7

Target:
<scratch>
2 9 + 5 7 , C: 0
2 + 5 , 6 C: 1  # added 9 + 7 = 6 carry 1
, 8 6 C: 0  # added 2 + 5 + 1 = 8 carry 0
0 8 6
</scratch>
8 6
```

Scratchpad (Nye et al. 22)

Coin Flip (state tracking)

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Chain-of-Thought (Wei et al. 21)

Algorithmic reasoning

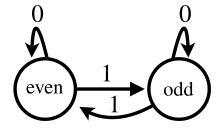
Coin flip = parity

- Input (flip or not): $\Sigma = \{1, 0\}$.
- State (head/even or tail/odd): $Q = \{0, 1\}$.

Coin Flip (state tracking)

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.



$$Q = \{\text{even, odd}\}\$$

 $\Sigma = \{0, 1\}$

a discrete-time dynamical system

$$\mathcal{A} = (Q, \Sigma, \delta) \qquad \qquad q_t = \delta(q_{t-1}, \sigma_t)$$
 states inputs transitions

(Semi)Automata

• Semiautomaton \mathcal{A} : a discrete-time dynamical system

$$\mathcal{A} = (Q, \Sigma, \delta)$$

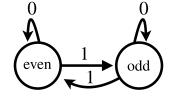
$$q_t = \delta(q_{t-1}, \sigma_t)$$

$$\downarrow 0$$

• Automaton: $(Q, \Sigma, \delta, \varphi)$, outputs $\widetilde{q}_t = \varphi(q_t)$ (acceptance function)

Simulating automata

(Semi)automata: a discrete-time dynamical system



$$\mathcal{A} = (Q, \Sigma, \delta) \qquad \qquad q_t = \delta(q_{t-1}, \sigma_t)$$
 states inputs transitions

$$=\delta(q_{t-1},\sigma_t)$$
 $Q=\{ ext{even, odd}\}$ $\Sigma=\{0,1\}$ e.g. parity counter

- Task: simulate \mathcal{A} : learn a seq2seq function for length T.
 - Input: sequence of tokens $\sigma_1, \sigma_2, \cdots, \sigma_T \in \Sigma$.
 - Output: sequence of states $q_1, q_2, \dots, q_T \in Q$.

e.g. parity counter: $\{\sigma_t\} = 01101, \ \{q_t\} = 01001.$

Simulating automata with Transformers

- (E) Can Transformers learn automata?
- Automata is *recurrent*; Transformers are *non-recurrent* (*parallel*) and shallow.
- Yes Shortcut: solutions with o(T) sequential "steps/rounds".
 - Def: longest path in a computation graph (i.e. at most T).
 - e.g. recurrent nets: sequence length.
 - e.g. Transformers: number of layers.

Simulating automata with Transformers

- Can Transformers learn automata?
- Automata is recurrent; Transformers are non-recurrent (parallel) and shallow.
- Yes Shortcut: solutions with o(T) sequential "steps/rounds".
 - Def: longest path in a computation graph (i.e. at most T).
 - e.g. recurrent nets: sequence length.
 - e.g. Transformers: number of layers.

Transformer recap

- $\forall i \in [T], x_i^{(l+1)} = \sum_i \alpha_{ij} x_j^{(l)};$
- $\alpha_{ij} \propto \exp(\langle W_Q x_i^{(l)}, W_K x_j^{(l)} \rangle).$



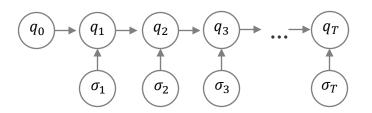
Simulating automata with Transformers

- (E) Can Transformers learn automata?
- Automata is *recurrent*; Transformers are *non-recurrent* (*parallel*) and shallow.

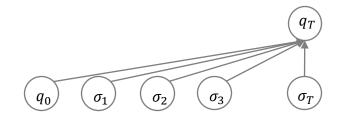
Yes – Shortcut: solutions with o(T) sequential "steps/rounds".

Example: parity (prefix sum): q_t , $\forall t \in [n]$,

• Iterative solution: $q_t = q_{t-1} \oplus \sigma_t \in \{0,1\}.$



• Shortcut (parallel) solution: $q_t = (\sum_{\tau \le t} \sigma_{\tau}) \mod 2 \in \{0,1\}.$



Why shortcuts:

- computational advantage;
- Unique & natural to Transformer.

Transformers Learn Shortcuts to Automata

TL;DR: Shallow Transformers can simulate $\mathcal{A} = (Q, \Sigma, \delta)$.

- Theory: for any length T, Transformers with o(T) layers suffice.
 - $O(\log T)$ -layer simulation for all \mathcal{A} (also the lower bound for the general case)
 - $O(|Q|^2 \log |Q|)$ -layer simulation for all solvable $\mathcal A$
 - O(1)-layer simulation for gridworld

Empirical study

- Positive: training shallow models SGD finds shortcuts in practice.
- Negative: they're brittle OOD (distr on input symbols; other lengths).
- Fix: Scratchpad training: force a Transformer to learn the recurrent solution.
- Discussions 🥎

Theory (as brain teasers)

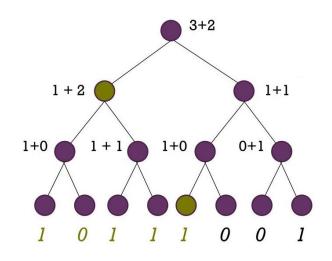
Solutions with o(T) computation depth

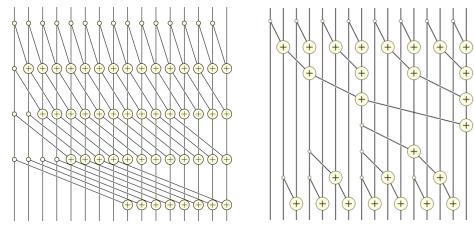
Puzzle 1: Do shortcuts exist?

 $\mathcal{A} = (Q, \Sigma, \delta)$: (states, inputs, transitions)

Task: for each $t \in [T]$, compute $q_t = \left(\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)\right)(q_0)$.

- Input token $\sigma \to \text{a function } \delta(\cdot, \sigma): Q \to Q$.
- Function composition (associative).





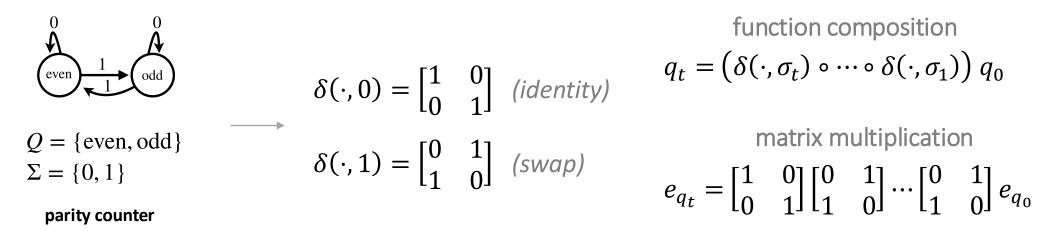
Parallel prefix sum (fig from Wikipedia)

Puzzle 1: Do shortcuts exist?

 $\mathcal{A} = (Q, \Sigma, \delta)$: (states, inputs, transitions)

Task: for each $t \in [T]$, compute $q_t = \left(\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)\right)(q_0)$.

- Input token $\sigma \to \text{a function } \delta(\cdot, \sigma): Q \to Q$.
- Function composition (associative) ←→ matrix multiplication



Representation theory (Chughtai 23): can explain $O(\log T)$, but not what's coming up.

Can we use $o(\log T)$ layers?

 $\mathcal{A} = (Q, \Sigma, \delta)$: (states, inputs, transitions)

We already have positive result on some tasks.

- Parity: $q_t = (\sum_{i \in [t]} \sigma_i) \mod 2$: only need to count #1s.
- Counting suffices, if the function composition is commutative.
 - Corollary: any commutative compositions (abelian groups--explained later) can be represented with O(1) layers.

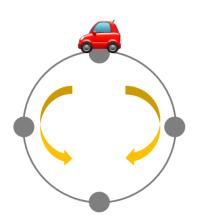
Question: Is there a solution with $o(\log T)$ layers when non-commutative?

Puzzle 2: $\tilde{O}(|Q|^2)$ layers

Reversible car on a circular road:

- $\Sigma = \{D, U\}$ (drive, U-turn), $Q = \{\clubsuit, \clubsuit\} \times \{0,1,2,3\}$.
- Consider input *DDDUDDUUD*...., starting from (\bigseta, 0).
- How to decide the current direction and position?
 - Direction = a parity task on U. (parity: $\{1, -1\} \leftrightarrow \{0, 1\}$)
 - Position = sum of signed counts (sign = parity of U) mod 4.

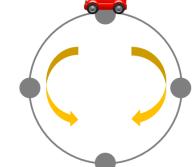
Signed counts: 1 1 1 0 -1-1 0 0 $-1 \rightarrow 0$



Solution 2: $\tilde{O}(|Q|^2)$ layers

Reversible car on a circular road:

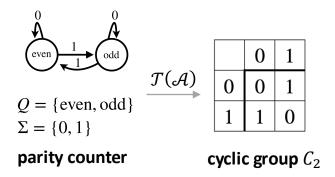
•
$$\Sigma = \{D, U\}$$
 (drive, U-turn), $Q = \{0,1,2,3\} \times \clubsuit$, \clubsuit).



• Decompose: 1) direction (parity), 2) position (signed sum mod 4).

Is such decomposition always possible? Yes!

Transformation group: $\mathcal{T}(\mathcal{A}) := \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.



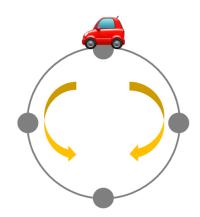
Group G: a set G with operation $G \times G \rightarrow G$.

- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: $a \cdot e = e \cdot a = a$
- Inverse: $\forall a \in G, \exists b \in G \text{ s.t. } a \cdot b = b \cdot a = e$

Solution 2: $\tilde{O}(|Q|^2)$ layers

Reversible car on a circular road:

- $\Sigma = \{D, U\}$ (drive, U-turn), $Q = \{0,1,2,3\} \times \clubsuit$, \clubsuit).
- Decompose: 1) direction (parity), 2) position (signed sum mod 4).



Is such decomposition always possible? Yes!

Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

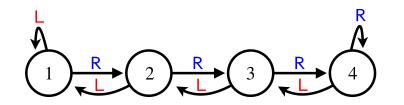
"Prime factorization" for groups: $G > H_n > \cdots > H_1$ (Jorden & Hölder [~1880])

- G > H: H is a normal subgroup of G (~factors).
- H_{i+1}/H_i are simple groups (~prime numbers).

What about *semi*groups?

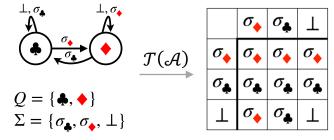
 $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition

1d gridworld: $\sigma_t = L/R$ steps, $q_t = location in a bounded room.$



$$q_0 = 1$$
, $q_t = \min(n, \max(1, q_{t-1} + 1))$
e.g. LRLLRRRRLL \mapsto 1, 2, 1, 1, 2, 3, 4, 4, 3, 2

•
$$\delta(\cdot, L) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 is not invertible $\rightarrow \mathcal{T}(\mathcal{A})$ is a *semigroup*.



1-bit memory unit

flip-flop monoid

Semigroup G: a generalization of group.

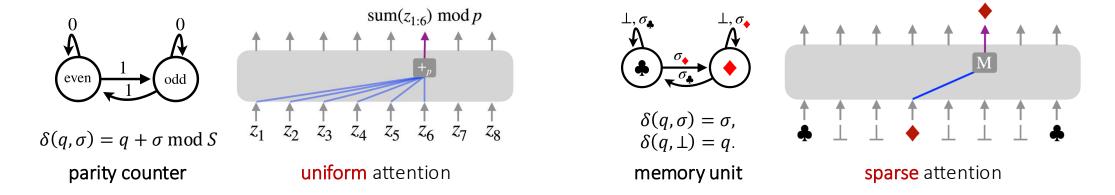
- Associativity.
- (+ Identity: a *monoid*.)

Solution 2: $\tilde{O}(|Q|^2)$ layers

 $\mathcal{A} = (Q, \Sigma, \delta)$: (states, inputs, transitions)

1d gridworld: $\sigma_t = L/R$ steps, $q_t = location in a bounded room.$

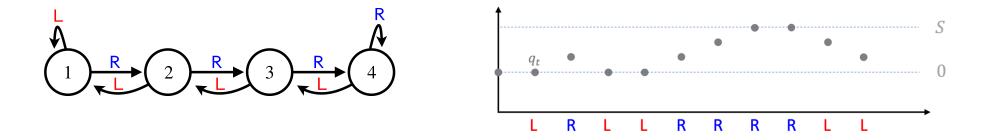
- *Krohn-Rhodes* (Thm 2): solvable semiautomata decomposed into mod + reset.
 - Solvable: H_{i+1}/H_i is commutative/abelian. [Recall Jorden & Hölder: $G > H_n > \cdots > H_1$]



*We do not claim that Transformers learn these decompositions in practice.

Puzzle 3: O(1) layers?

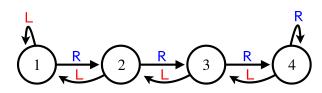
1d gridworld: $\sigma_t = L/R$ steps, $q_t = location$ in a bounded room.



Puzzle: design a parallel algorithm to compute $\sigma_{1:T} \mapsto q_{1:T}$.

• Hint: boundary detection: discard history; easy afterwards (prefix sum).

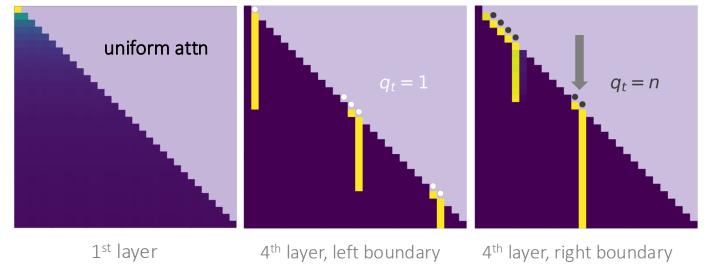
Solution 3: O(1) layer for $(1)^{2}$



"You can only figure out whether you're at a wall if you know q_{t-1} ."

• Parallel boundary detection!

• discard history; easy afterwards (prefix sum).

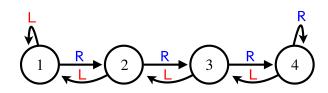


attention heatmaps

(GPT solved this before we did o o)

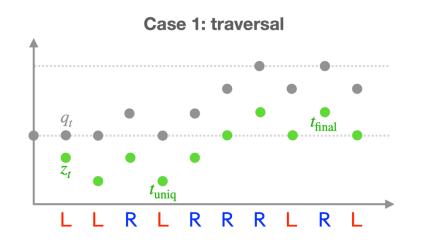
"mechanistic interpretability" [Nanda & Lieberum '22]

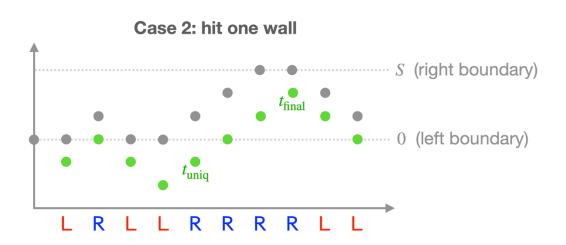
Solution 3: O(1) layer for \bigcirc



Parallel boundary detector:

- Compute prefix sums $z_t \coloneqq \sum \sigma_{1:t}$ (ignoring boundaries);
- At each t, find most recent $t_{\mathrm{uniq}} < t$ such that $z_{t_{\mathrm{uniq}}:t}$ has n(#states) unique values;
- Then $t_{\text{final}} \coloneqq \max \left(\underset{t_{\text{uniq}} \le \tau \le t}{\operatorname{argmin}} z_{\tau} \right)$ is last boundary collision.





Takeaways

For any length T, Transformers can simulate \mathcal{A} with o(T) depth.

- Theorem 1: $O(\log T)$ -layer simulation for all A
 - Parallel prefix computation (divide and conquer); lower bound for general A.
- Theorem 2: $O(|Q|^2 \log |Q|)$ -layer simulation for all solvable $\mathcal A$
 - Factorization (Krohn-Rhodes).
- Theorem 3: O(1)-layer simulation for gridworld \bigcirc
 - Specific \mathcal{A} : even shallower results (e.g. via parallel boundary detector).

Empirical findings

Positive results, challenges

Overview

 $\sigma_{1:T} \to \text{Transformer} \to q_{1:T}$

(Theory)

Q0: are shallow non-recurrent nets sufficiently expressive? [Yes!]

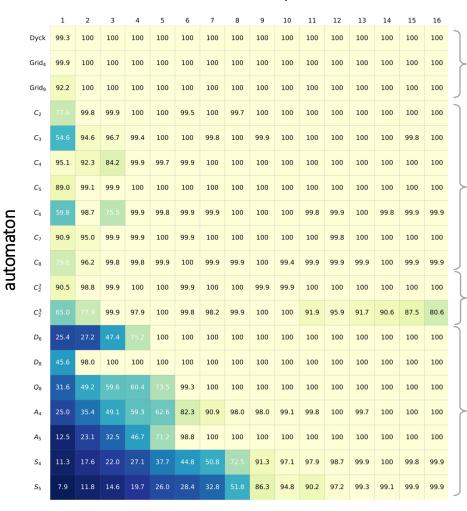
(Experiments)

- Q1: Can SGD find shortcuts in practice?
- Q2: Shortcomings of shortcuts?
 - Q2.1: Does SGD work with limited supervision?
 - Q2.2: Are shortcuts robust to unseen inputs?
- Q3: Solutions?

(Open question)

- Q4: How to interpret the shortcuts?
- Q5: How to design an architecture to solve reasoning tasks?

SGD works, under ideal supervision



Q1: Does SGD on Transformers find shortcuts? Yes!

Group-free semiautomata (reset): Dyck, gridworld

• Easy to learn; generalizes Dyck results [Yao et al. '22]

Cyclic groups (mod-n counters): unstable training & o.o.d. eval

- possibly accounts for previous negative results [Bhattamishra et al. '20]
- open challenge: improve architectures and training.

Other abelian groups: worse instabilities; higher depth helps training

Harder groups: more results including D_8 , A_5 (non-solvable), S_5 (NC^1 -complete).

- Groups with deeper factorization requires mores layers
- open challenge 1: dissect/interpret the learned solutions
- open challenge 2: precisely characterize instance complexity

Training robustness: SGD beyond ideal supervision

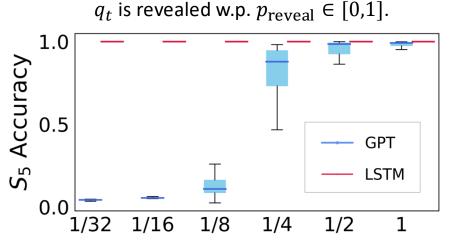
Q2.1: Does SGD work under limited supervision? Up to a point.

• Setup: reduce the amount of state info during training; in-distribution eval.

Indirect supervision train & test on a function of q_t .

$\mathrm{Dyck}_{4,8}$	Grid_9	S_5	C_4	D_8
stack top	$\mathbb{1}_{ ext{boundary}}$	$\pi_{1:t}(1)$	$\mathbb{1}_{0 \bmod 4}$	location
100.0	99.8	99.8	99.7	99.8

Incomplete supervision



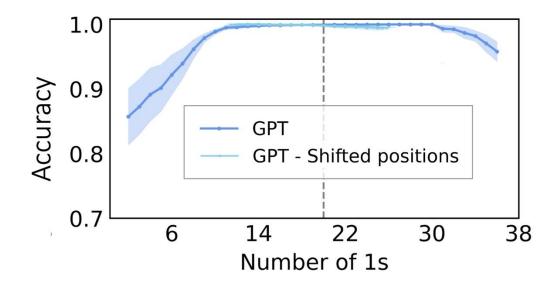
 p_{reveal}

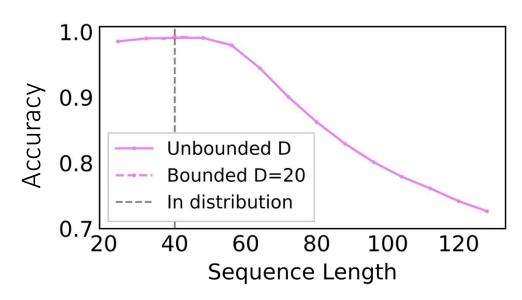
Takeaway: learning is still possible, but not as robust as RNNs (LSTM always 100%).

Testing robustness: hallucinated variables

Q2.2: Are shortcuts robust to unseen inputs? No.

- Parity (C_2) : ideal training with p(1) = 0.5, evaluate under distribution shifts.
 - Shortcut $q_t = (\sum_{i \in [t]} \sigma_i) \mod 2 \to (\sum_{i \in [t]} \sigma_i) \approx t/2$ with deviation $\sim \sqrt{t}$.
 - mod 2 is memorized by MLP: fail to generalize to diff $(\sum_{i \in [t]} \sigma_i)$.
- Transformer solutions? Same failure mode → maybe same solution.

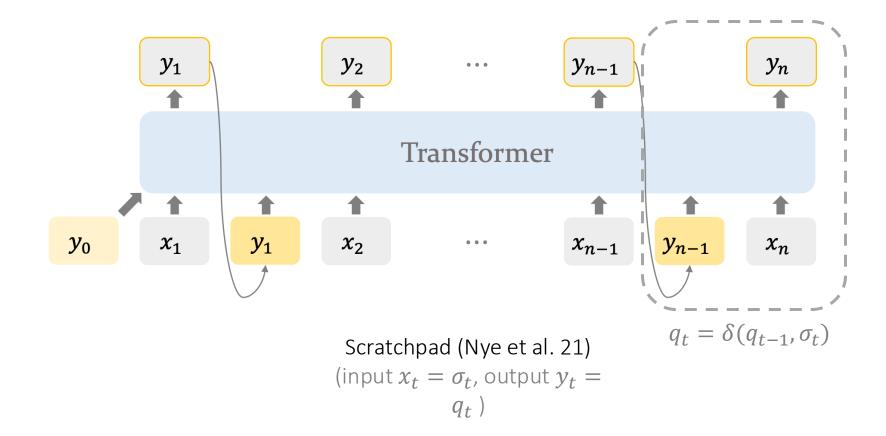




The recurrent mode of Transformers

Q3: Solutions? Guiding Transformers to learn recurrent solutions.

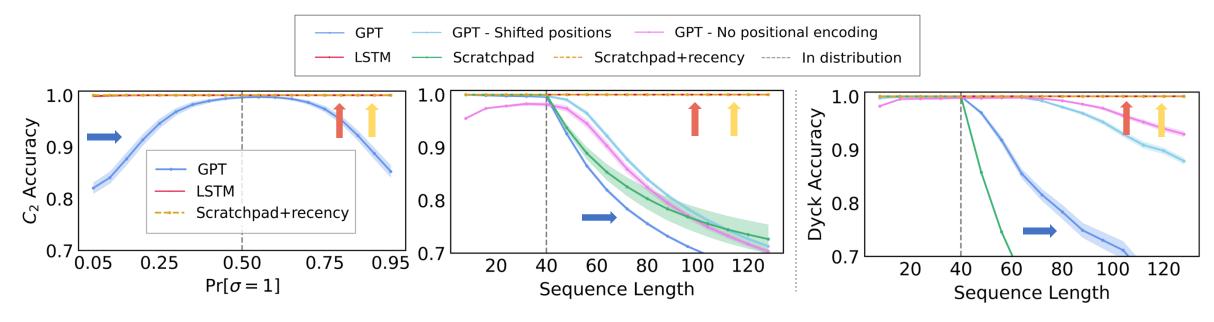
• Setup: train with previous states as inputs;



The recurrent mode of Transformers

Q3: Solutions? Guiding Transformers to learn recurrent solutions.

• Setup: train with previous states as inputs; eval at diff distributions or lengths.



Takeaway: Transformers turned recurrent with scratchpad [Nye et al. 22] + recency bias [Press et al. 21] → Open: Can we learn shortcuts that generalize?

Takeaway

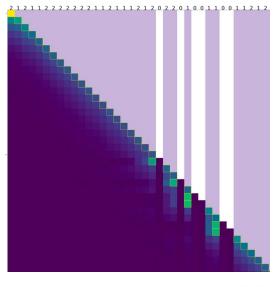
- Positive: Transformers with SGD can find good in-distribution solutions.
 - The trend roughly matches our beliefs on the difficulty of the tasks.
- Challenges: shortcuts are less robust than recurrent methods
 - Struggle at OOD generalization / changes in training setups.
 - Open question: How to thoroughly test for generalization?
 - Fix: made recurrent by scratchpad + recency bias.
- Mechanistic understanding
 - Gridworld: boundary detection.
 - Parity: evidence for implementing $(\sum_t \sigma_t) \mod 2$.

Discussions: Interpretability and generalization

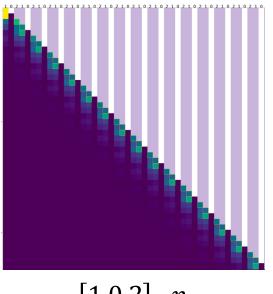
How to test for generalization? ∞ unseen inputs -- how much do we need to probe?

e.g. Flipflop : train with
$$p(0) = 0.5$$
, $p(1) = p(2) = \frac{1-p(0)}{2}$.

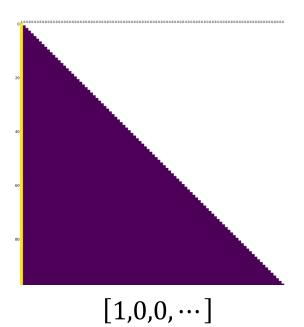
• Test: $p(0) \in \{0.1, 0.2, ..., 0.9\} \times (100k \text{ len-}100 \text{ seqs})$: 100% accuracy



random with small p(0)



 $[1,0,2] \cdot n$

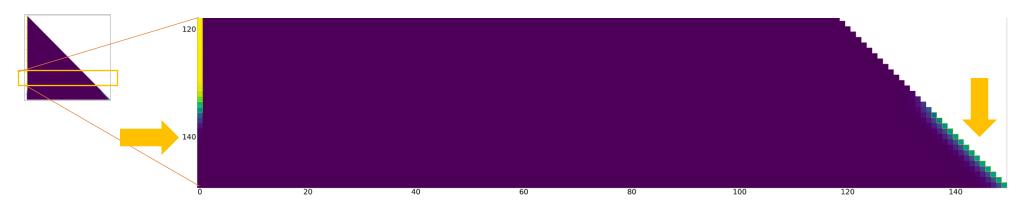


Discussions: Interpretability and generalization

How to test for generalization? ∞ unseen inputs -- how much do we need to probe?

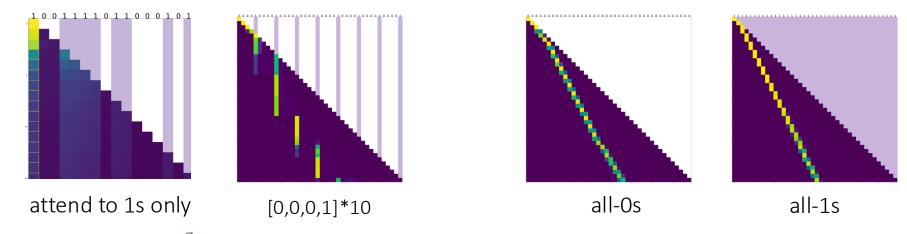
e.g. Flipflop : train with
$$p(0) = 0.5$$
, $p(1) = p(2) = \frac{1-p(0)}{2}$.

- Test: 100% for $p(0) \in \{0.1, 0.2, ..., 0.9\}$, for 100k len-100 seqs per p(0).
- [1,0,0,0,...,0] is the hardest sample -- long-term dependency solved! \odot
- Not quite: failing on length generalization.

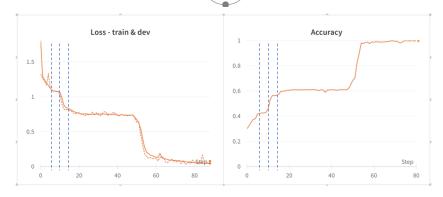


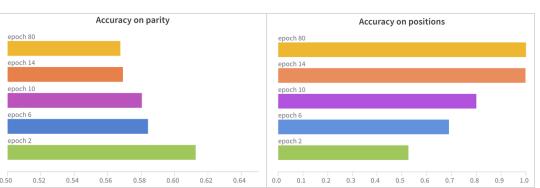
Discussions: (mechanistic) interpretability

• Parity: what if not "sensible"? Variance (across randomness) in the patterns?



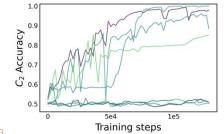
• Dihedral group (): not learning the parity (on direction).



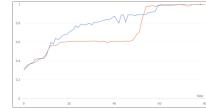


Discussions: optimization

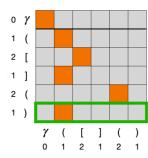
- Improve / stabilize training?
 - e.g. Parity: without positional encoding? With 1 layer?



- How to find (hidden) progress measures?
 - Barak 22, Nanda 23



- What solutions are preferred, e.g. among shortcuts?
 - Dyck: sparse in theory (<u>Yao 20</u>), uniform in practice.
 - Are some solutions better than others?



- Modified architecture: parity: no issue with mod if using $\sin(\sum \sigma_t)$.
 - → How to optimize with sinusoidal activation?

Discussions

Generalization

- Is is possible to have *guarantees* via tests (e.g. a "complete" test set)?
- Is interpretability required for true generalization?

Synthetic & real

- Why synthetic: clean setup + cheaper + infinite supply of data
 - Decomposition → understand basic units first
 - Easier to formalize & understand & diagnose & fix
- Why not synthetic: not directly useful
 - What's missing: factual aspects? "Complex" structures?
- Goal: Transfer insights to code / math / languages.
- Shortcut & recurrent: best of both worlds? (RWKV?)

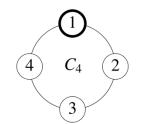
Transformers Learn Shortcuts to Automata

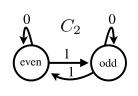
TL;DR: o(T)-depth Transformers can simulate \mathcal{A} , in theory and practice

- Theory: for any length T, Transformers can learn:
 - $O(\log T)$ -layer for all \mathcal{A} parallel prefix computation
 - Non-solvable A: matching lower bound (Barrington)
 - $O(|Q|^2 \log |Q|)$ -layer for all solvable \mathcal{A} factorization with Krohn-Rhodes
 - O(1)-layer for gridworld boundary detector
- Empirical study: shortcuts can be found but are brittle OOD.
 - Fix: make Transformers recurrent (scratchpad + recency bias).
- Future work: understanding and improving the model?

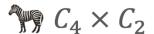
Appendix

Theorem 2: the glue



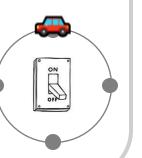


Direct product \times , e.g. $\mathcal{C}_4 \times \mathcal{C}_2$



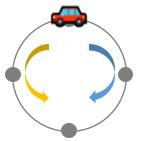
Two independent groups

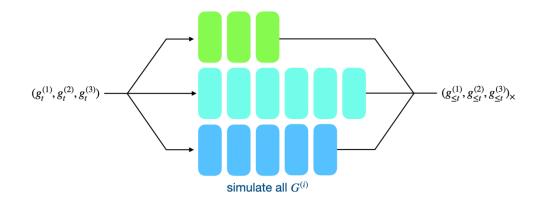
- $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_1, h_1h_2)$
- e.g. car + a light switch

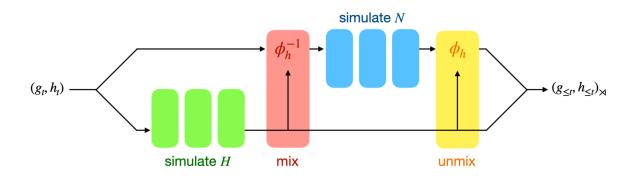


Two *interacting* groups

- $(g_1, h_1) \cdot (g_2, h_2) = (g_1 h_2 g_2 h_2^{-1}, h_1 h_2)$
- e.g. car + direction toggle





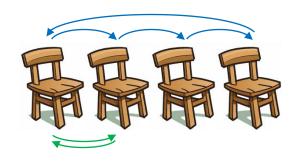


What about *semigroups*?

 $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition

More complicated: rank collapses.

n-player musical chairs



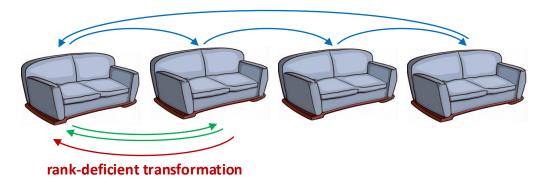
$$Q = \{\text{positions of } n \text{ players}\}$$

$$\Sigma = \{\text{ cycle, swap }\}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

 $\mathcal{T}(\mathcal{A}) = S_n$: all n! permutations on [n]

n-player musical sofas



$$Q = \{\text{positions of } n \text{ players}\}$$

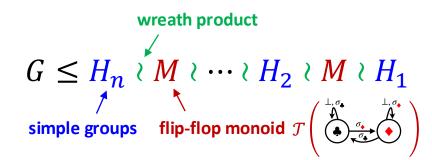
$$\Sigma = \{ \text{ cycle, swap, merge } \}$$

$$\mathcal{T}(\mathcal{A}) = T_n$$
: all n^n functions $[n] \to [n]$

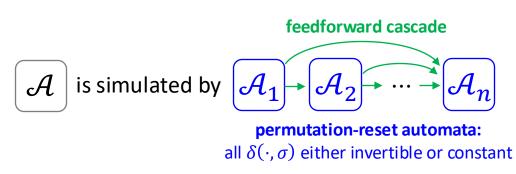
Prime factorizations of algebraic objects

- Universal structure theorems in abstract algebra:
 - Integers: $N=p_1\cdot p_2\cdots p_n$, prime numbers p_i [Euclid ~300 BC]
 - Groups: $G > H_n > \cdots > H_1$, simple groups H_{i+1}/H_i [Jordan & Hölder ~1880]
 - Semigroups: do we know anything if we're only given associativity?
- Yes! [Krohn & Rhodes '65]

Krohn-Rhodes theorem (semigroups)



Krohn-Rhodes theorem (semiautomata)



Factorization: from integers to groups

$$8 = 2 \times 2 \times 2$$

• Why groups get complicated: combinatorial explosion

```
C_8: mod-8 addition E_8\cong C_2\times C_2\times C_2: 3-bit vectors under XOR C_4\times C_2: non-interacting mod-4 & parity D_8\cong C_4\rtimes C_2: rotations/reflections of a square Q_8: multiplication of unit quaternions Q_8: multiplication of unit quaternions
```

• Finite group theory: classical toolbox for understanding symmetries

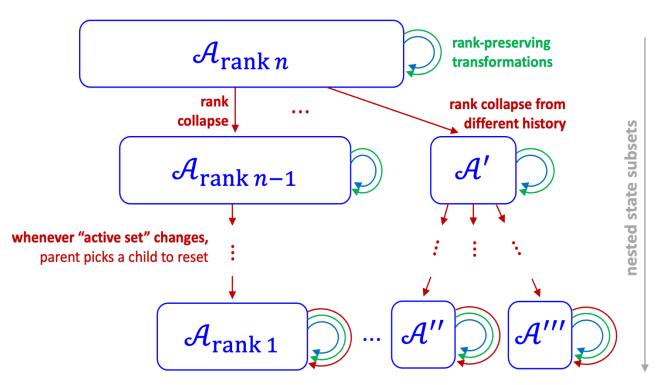
$$C_8, E_8, C_4 \times C_2, D_8, Q_8 \leq (C_2 \wr C_2) \wr C_2$$

Jordan-Hölder factors (simple groups)

Krasner-Kaloujnine embedding (wreath product)

Krohn-Rhodes intuitions

Tracking rank collapses (holonomy decomposition)

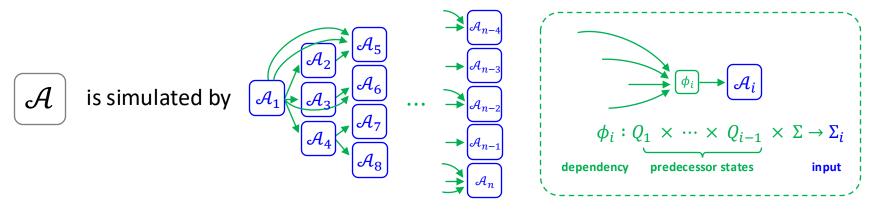


Number of layers:

- Solvable groups: $O(\log |G|)$
 - mod counter
- Permutation-reset semiautomaton: $O(\log |G|) + 2 \le O(|Q| \log |Q|)$.
 - mod counter + memory unit
- Semiautomaton: ≤ |Q| levels of the above.

Proof of Krohn-Rhodes: key intuitions

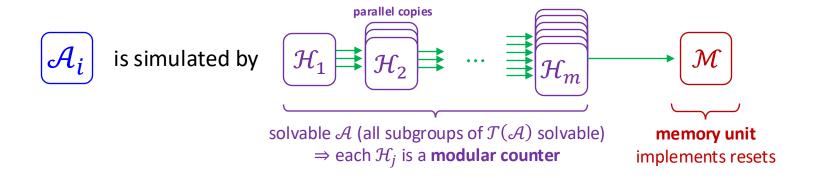
Holonomy decomposition "compiles" to a cascade



semigroup theory under the hood:

 $\mathcal{T}(\mathcal{A}_j)$ are holonomy groups adjoined with left zero semigroups, i.e. permutations + resets

• Permutation-reset semiautomata factorize further



group theory under the hood:

 $\mathcal{T}(\mathcal{H}_j)$ are simple groups from Jordan-Hölder composition factors, which are all cyclic if \mathcal{A} is solvable

realized by universal embedding theorem

[Krasner & Kaloujnine '51]

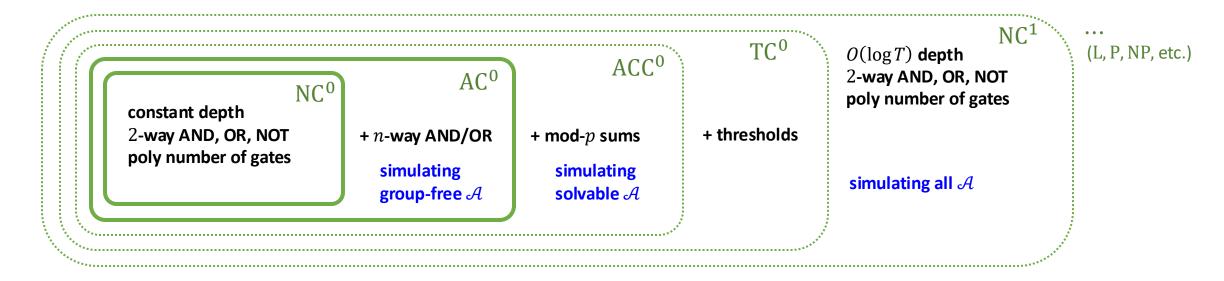
Implications for simulating automata

- Krohn-Rhodes: all \mathcal{A} decompose into permutation-reset $\{\mathcal{A}_i\}$
- Jordan-Hölder: all \mathcal{A}_i decompose into simple group machines $\{\mathcal{H}_i\}$
- **Recall:** when can we find a solution like $\Sigma \sigma_{1:t} \mod 2$ for parity?
- Answer: whenever the "atoms" and "glue" are implementable

Need circuit complexity to formalize the question...

Quantifying efficient parallel circuits

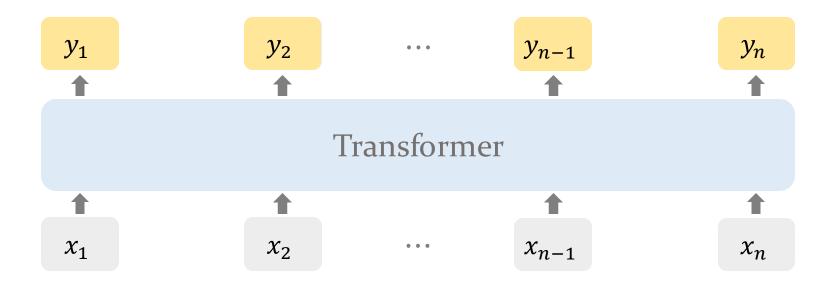
- Goal: formalize "Krohn-Rhodes implies efficient simulation"
- Low-depth parallel algorithms are best captured by circuit complexity



Embarrassingly open: are any of the proper? $ACC^0 \stackrel{?}{=} NP$?

Scratchpads (modification of Nye et al. 21)

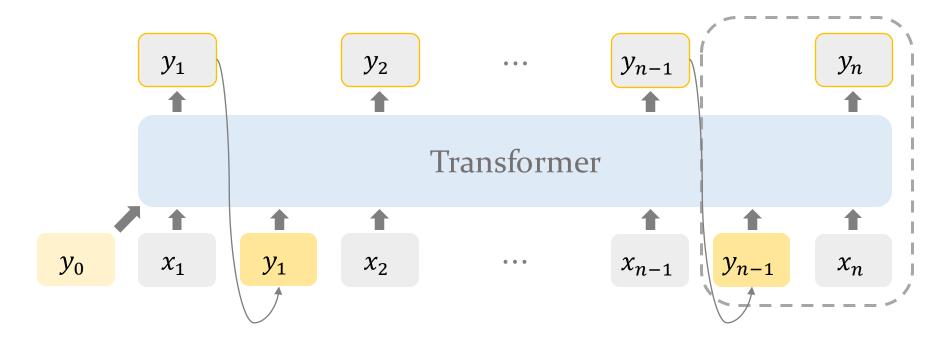
Idea: make the model recurrent with scratchpad (~buffer): explicitly modeling states.



want: $y_i = x_i \oplus y_{i-1}$

Scratchpads (modification of Nye et al. 21)

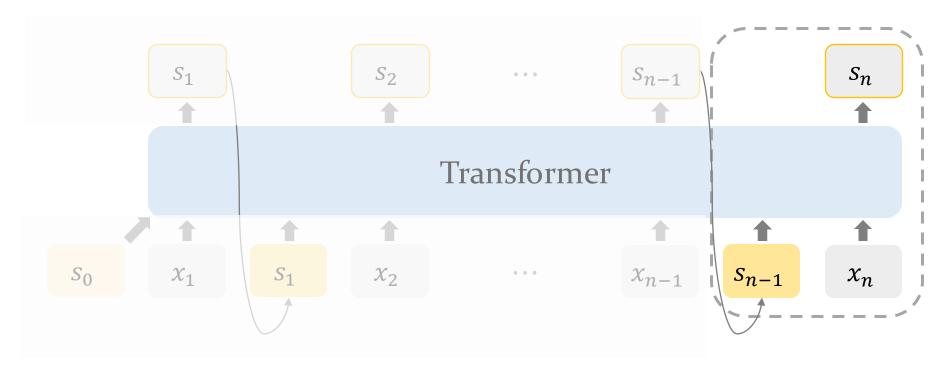
Idea: make the model recurrent with scratchpad (~buffer): explicitly modeling states



want: $y_i = x_i \oplus y_{i-1}$

Scratchpads (modification of Nye et al. 21)

Idea: make the model recurrent with scratchpad (~buffer): explicitly modeling states



want: $s_i := y_i = x_i \oplus s_{i-1}$