

Thinking Fast with Transformers

Algorithmic Reasoning with Shortcuts

Bingbin Liu CMU

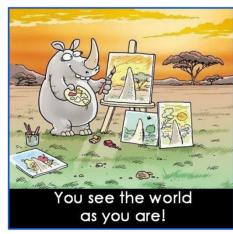
Jordan T. Ash MSR NYC

Surbhi Goel UPenn

Akshay Krishnamurthy MSR NYC

Cyril Zhang MSR NYC

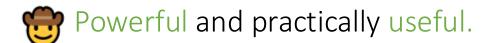
Reasoning in language models



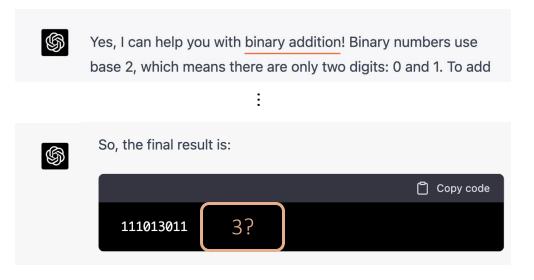
```
9 // Get average runtime of successful runs in seconds
10 func averageRuntimeInSeconds(runs []Run) float64 {

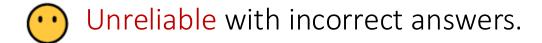
var totalTime int
var failedRuns int
for _, run := range runs {
    if run.Failed {
        failedRuns++
    } else {
        totalTime += run.Time
    }

averageRuntime := float64(totalTime) / float64(len(runs) - failedRuns) / 1000
return averageRuntime
```



Capabilities and limitations?

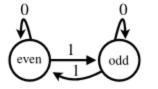


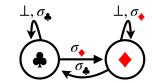


Agenda

Q: How can parallel models such as Transformers model sequential reasoning?

Formalizing with automata:

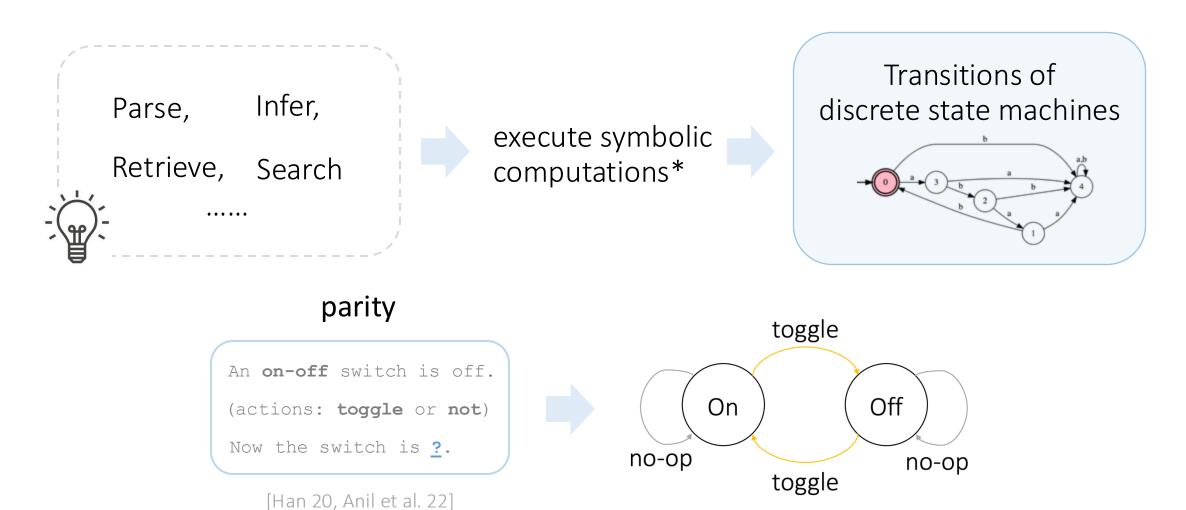




- Capabilities in theory (representational)
- Solutions found in practice (optimization, generalization)

TL;DR: Transformers reason with shallow solutions, with computational advantages but statistical issues.

Formalizing reasoning



Formalizing reasoning

Parse, Infer,
Retrieve, Search
......

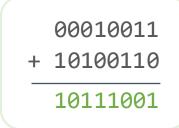
An on-off switch is off.

(actions: toggle or not)

Now the switch is ?.

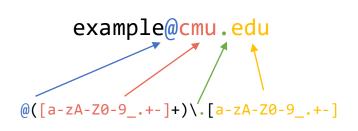
Parity

[Han 20, Anil et al. 22]



Addition

[Nogueira et al. 21]



Regular expressions

[Bhattamishra et al. 20]

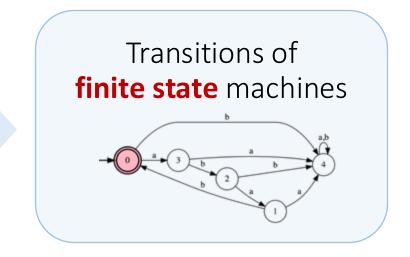
Bounded nested brackets

[Yao et al. 21]

Formalizing reasoning

Wide ranges of reasoning tasks

finite-state automata ↔ regular languages



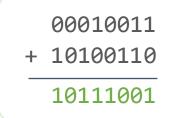
An on-off switch is off.

(actions: toggle or not)

Now the switch is ?.

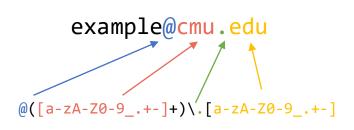
Parity

[Han 20, Anil et al. 22]



Addition

[Nogueira et al. 21]



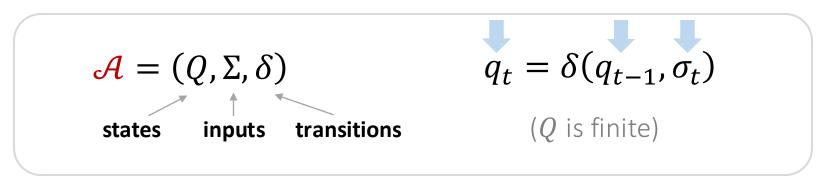
Regular expressions

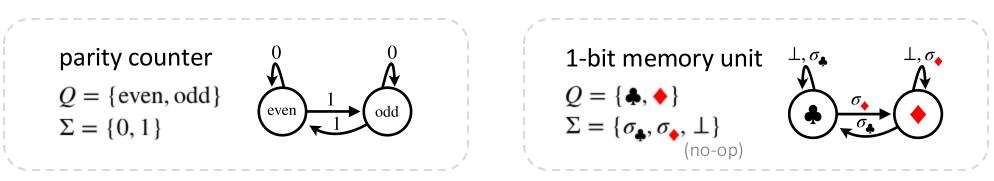
[Bhattamishra et al. 20]

Bounded nested brackets

[Yao et al. 21]

Formalizing reasoning with automata





(will reappear later)

Task: modeling the dynamics of A.

Task: Simulating automata

$$\mathcal{A} = (Q, \Sigma, \delta)$$
 states, inputs, transitions

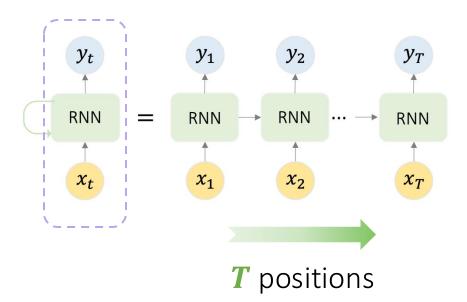
Simulating \mathcal{A} : learn a *seq2seq function* for sequence length T.

• Input = $\sigma_1, \sigma_2, \cdots, \sigma_T \in \Sigma$ (alphabet), output = $q_1, q_2, \cdots, q_T \in Q$ (states).

Architecture choices

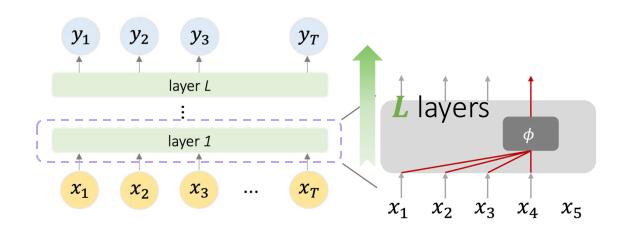
RNN

sequential across positions Natural for $q_t = \delta(q_{t-1}, \sigma_t)$



Transformer

parallel across positions sequential across layers



Typically $L \ll T$.

Task: Simulating automata

 $\mathcal{A} = (Q, \Sigma, \delta)$ states, inputs, transitions

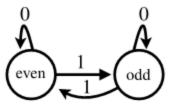
Simulating \mathcal{A} : learn a *seq2seq function* for sequence length T.

• Input = σ_1 , σ_2 , \cdots , $\sigma_T \in \Sigma$ (alphabet), output = q_1 , q_2 , \cdots , $q_T \in Q$ (states).

Note: more than 1 way to simulate \mathcal{A} .

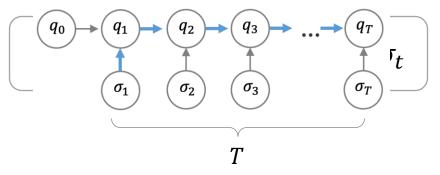
Shortcut

o(T) # sequential steps



parity counter

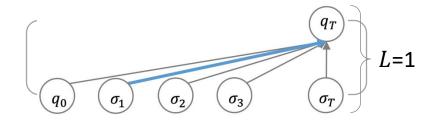
Iterative solution



"RNN solutions"

X Not shortcut

Parallel solution



"Transformer solutions"

Transformers learn shortcut to automata

Q: How parallel models such as Transformers perform sequential reasoning?

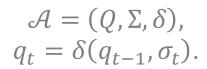
Theoretically: shortcut solutions

- How short can the shortcuts be?
 - Measured by network depth.
- What structure/properties are needed?
 - Tools: group theory, Krohn-Rhodes.

Empirically:

- Can shortcuts be found?
 - Is theory predictive?
- What are the empirical solutions?
 - Same as the constructions?
 - Properties?

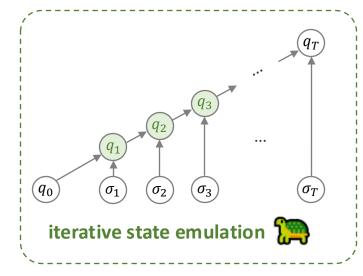
Solutions of Reasoning



steps =
$$T$$
 definition of δ

steps =
$$O(\log T)$$

steps =
$$O_{|Q|}(1)$$



(shortcuts)

represented by RNNs

represented by Transformers

$O(\log T)$ steps

$$\mathcal{A} = (Q, \Sigma, \delta),$$

$$q_t = \delta(q_{t-1}, \sigma_t).$$

Goal: compute
$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1))(q_0), t \in [T].$$

$$\delta(\cdot, \sigma): Q \to Q$$

function \longleftrightarrow matrix

composition

multiplication

$$\delta(\cdot,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad q_t = \left(\delta(\cdot,\sigma_t) \circ \cdots \circ \delta(\cdot,\sigma_1)\right) q_0$$

$$Q = \{\text{even, odd}\}$$

$$\Sigma = \{0,1\}$$

$$\delta(\cdot,1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad e_{q_t} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} e_{q_0}$$

parity counter

$O(\log T)$ steps

$$\mathcal{A} = (Q, \Sigma, \delta),$$

$$q_t = \delta(q_{t-1}, \sigma_t).$$

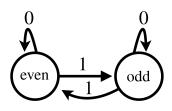
Goal: compute
$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1))(q_0), t \in [T].$$

$$\delta(\cdot, \sigma): Q \to Q$$

function \longrightarrow matrix

composition

multiplication



$$Q = \{\text{even, odd}\}\$$

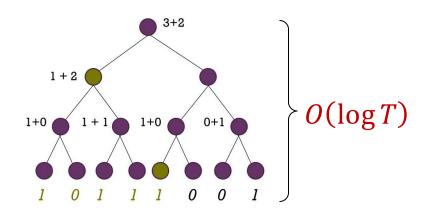
 $\Sigma = \{0, 1\}$

parity counter

$$\delta(\cdot,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$
$$\delta(\cdot,1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\delta(\cdot, 1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

associativity

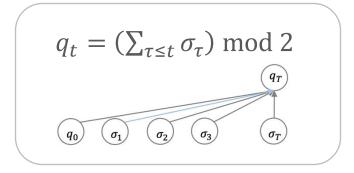


Can we use $o(\log T)$ layers?

$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)) (q_0)$$

We already have positive results.

• Parity: only need to count #1s.



$$f \circ g = g \circ f$$

Counting works for commutative function composition: O(1) layers.

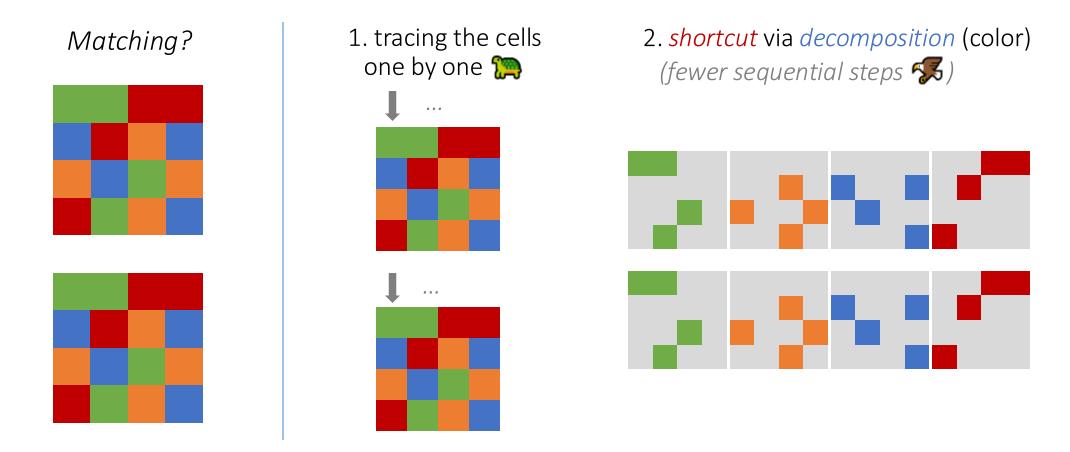
$$f \circ g \neq g \circ f$$

How about *non-commutative* compositions?

Decomposition

$\tilde{O}(|Q|^2)$ steps: decomposition

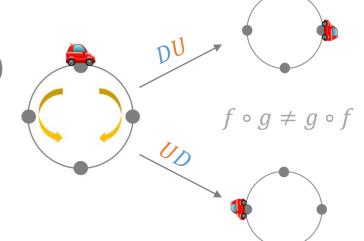
Aside: "Shortcut" in recognizing visual patterns [Huang and Pashler 07]



Decomposition: car on a circle

$$Q = \{ \rightleftharpoons, \rightleftharpoons \} \times \{0,1,2,3\}, \Sigma = \{D(\text{drive}), U(\text{U-turn})\}$$

$$q_0 = (\clubsuit, 0), \ \sigma_{1:T} = DDDUDDUUD \rightarrow q_T$$
?



- Direction = parity (sum) of U. (parity: $\{1, -1\} \leftrightarrow \{0, 1\}$)
- Position = signed sum mod 4 : sign = parity of U.

$$O(1)$$
 layer each

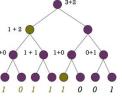
Parity: 1 1 1 -1 -1 -1
$$-1$$
 -1 \rightarrow \clubsuit

Signed sum: 1 1 1 0 -1 -1 0 0 -1
$$\rightarrow$$
 0

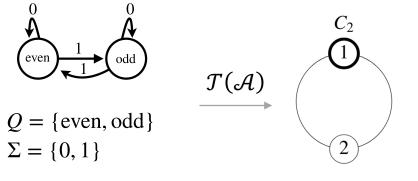
What are we decomposing?

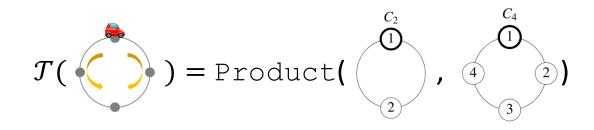
Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

Recall: group axioms



- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ Inverse: $a \cdot b = b \cdot a = e$ (identity)





parity counter (mod 2)

cyclic group C_2

Group: associative + invertible

Transformation group: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

"Prime factorization" for groups:

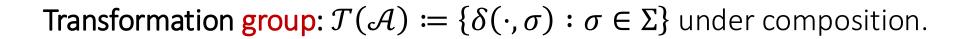
$$G = H_n > H_{n-1} \cdots > H_1$$
 (Jordan & Hölder) $[N = p_n \cdot p_{n-1} \cdots p_1 \text{ (Euclid) }]$

- H_{i-1} is a "factor" (normal subgroup) of H_i . $\rightarrow n = O(\log |G|)$
- H_{i+1}/H_i are "prime numbers" (simple groups). If commutative (abelian): 1 layer

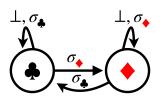
Product factors

"Solvable G" ... with $O(\log |G|)$ layers ... What is |G|?

Group: associative + invertible



Invertible: $a \cdot b = b \cdot a = e$ (identity)



$$\delta(\cdot, \ \sigma_{\spadesuit}) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

singular → no inverse

$$Q = \{ \clubsuit, \blacklozenge \}$$

$$\Sigma = \{ \sigma_{\spadesuit}, \sigma_{\blacklozenge}, \bot \}$$

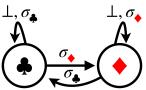
1-bit memory unit

(aka. flipflop)

Semigroup: associative (+ identity)

Transformation semigroup: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

Invertible: $a \cdot b = b \cdot a = e$ (identity)



$$\begin{aligned} Q &= \{ \clubsuit, \blacklozenge \} \\ \Sigma &= \{ \sigma_{\spadesuit}, \sigma_{\blacklozenge}, \bot \} \end{aligned}$$

1-bit memory unit

(aka. flipflop)

$$|\mathcal{T}(\mathcal{A})| \le O(|Q|^{|Q|})$$

 $\delta(\cdot, \ \sigma_{\clubsuit}) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

i.e. with $O(|Q|\log |Q|)$ layers $\tilde{O}(|Q|)$

Semigroup: associativity only

Jordan & Hölder $(\mathcal{T}(\mathcal{A}): group)$

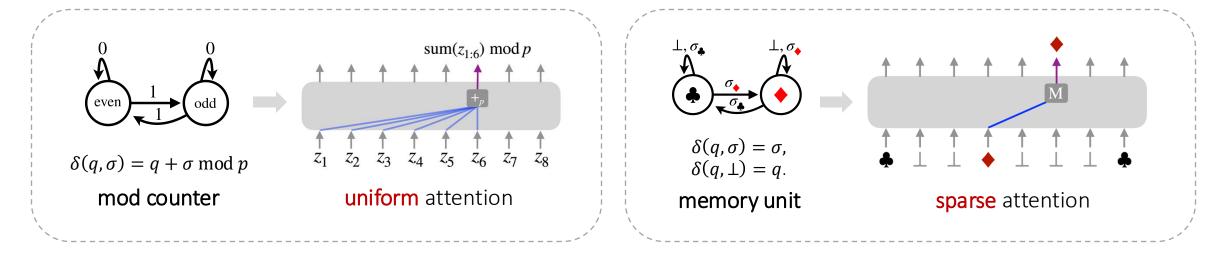
Krohn-Rhodes ($\mathcal{T}(\mathcal{A})$: semigroup)

$\tilde{O}(|Q|^2)$ steps: decomposition

constrain the type of "factors"

 $\# factors \leq poly(|Q|)$

Krohn-Rhodes: solvable \mathcal{A} decomposes into 2 types of factors.



Each representable by 1 Transformer layer

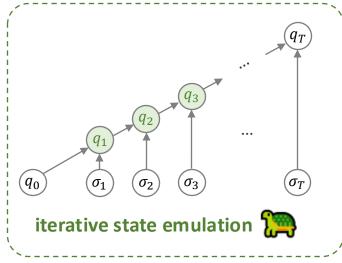
+ "gluing" with O(1) layers (using MLP).

Solutions of Reasoning

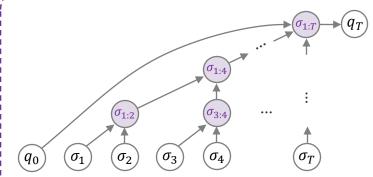
$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)) (q_0)$$

steps = Tdefinition of δ # steps = $O(\log T)$ associativity

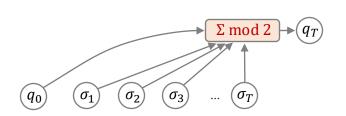
steps = $\tilde{O}(|Q|^2)$ algebraic structure



represented by RNNs



multi-scale function composition



Krohn-Rhodes decomposition 🤝

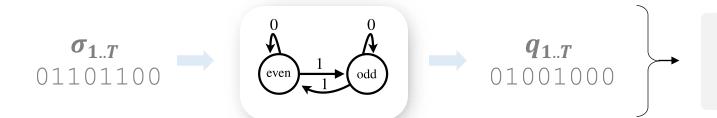
represented by Transformers

for all A

for solvable A

Simulating \mathcal{A} in practice

19 automata



Transformer with standard training

Can shortcuts be found?

Can shortcuts be learned?

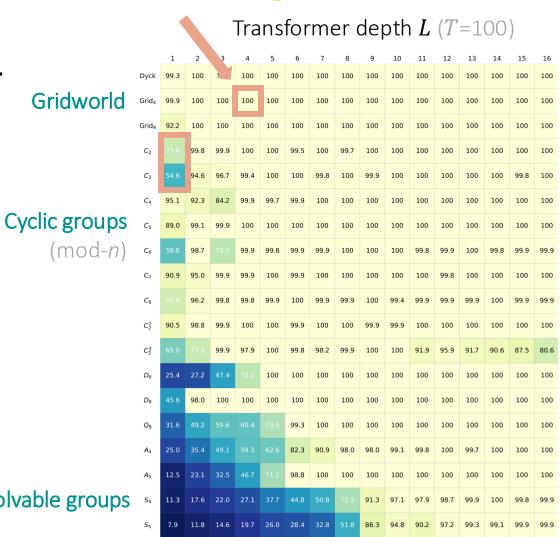
Yes, across 19 automata & 16 depths.

- Shortcuts are found.
- Deeper factorization \rightarrow more layers.
- Open challenges:
 - Stabilize training?
 - Interpret the solutions?
 - example: Gridworld

Non-solvable groups

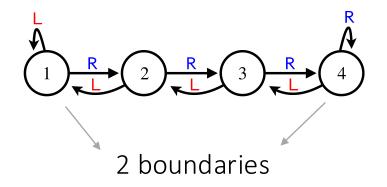
(mod-*n*)

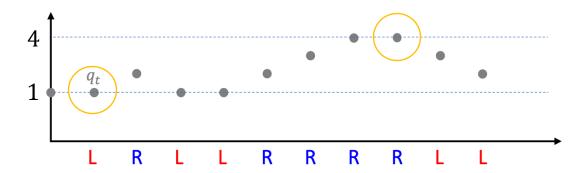
lighter > darker



Interpreting gridworld

1d gridworld: $Q = \{1, 2, 3, 4\}, \Sigma = \{L, R\}.$





• State matters: $LR \neq RL$ at state 1, but LR = RL at state 3.

"You can only figure out where you are if you know q_{t-1} ."

O(1) layer for (1) (2) (3) (2) (3) (4)

Puzzle: design a parallel algorithm to compute $\sigma_{1:T} \mapsto q_{1:T}$.

• Hint: *boundary detection*: no boundary = prefix sum.

Transformers find boundaries:

O(1)-layer (Krohn-Rhodes: $\tilde{O}(|Q|^2)$)

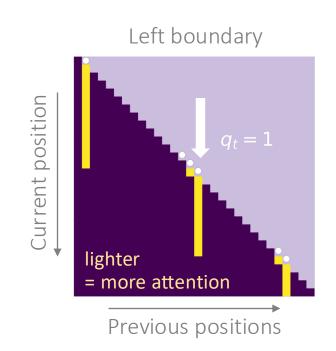
attention heatmaps

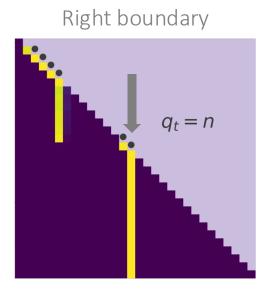
(GPT solved this before us 😈)

→ algorithm extracted

"mechanistic interpretability"

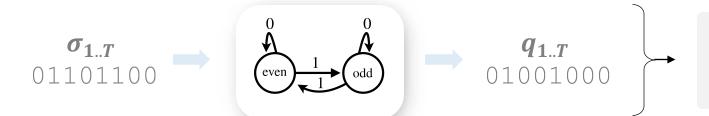
*Caution: challenges of interpreting attention maps [WLLR NeurIPS23]





Simulating \mathcal{A} in practice

19 automata



Transformer with standard training

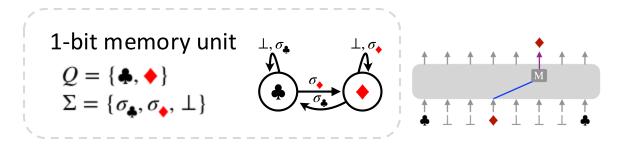
Can shortcuts be found?

Yes; e.g. gridworld.

Robust Out-Of-Distribution?

Problems with shortcuts?

Flip-flop: A simple task where Transformers struggle out-of-distribution (OOD).

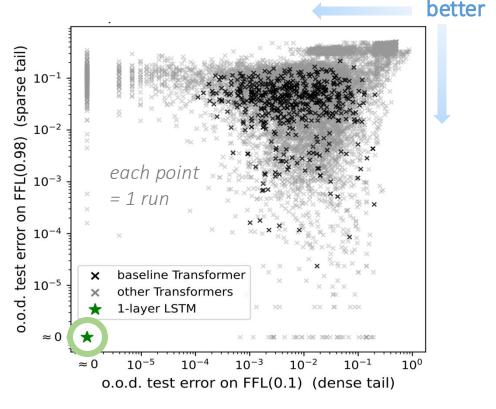


Attention glitches: imperfect retrieval.

- Inherent limitations of attention.
- Potential contributor to hallucination.

Mitigation: No perfect mitigations.

• unless introducing *long-tailed data* also in prior work, e.g. priming [Jelassi et al. 23].



LAGKZ23b [NeurIPS23, spotlight]

Flip-Flop Language Modeling (FFLM)

Flip-Flop Language (FFL): sequences of instruction-value pairs.

- 3 instructions: w (write), i (ignore), r (read).
- 2 values: {0, 1}; the value for r must be the same as the last w.

Task: predict values following \mathbf{r} (i.e. locate the most recent \mathbf{w})

Distributions:
$$FFL(p_i)$$
: $p_w = p_r = \frac{1-p_i}{2}$.

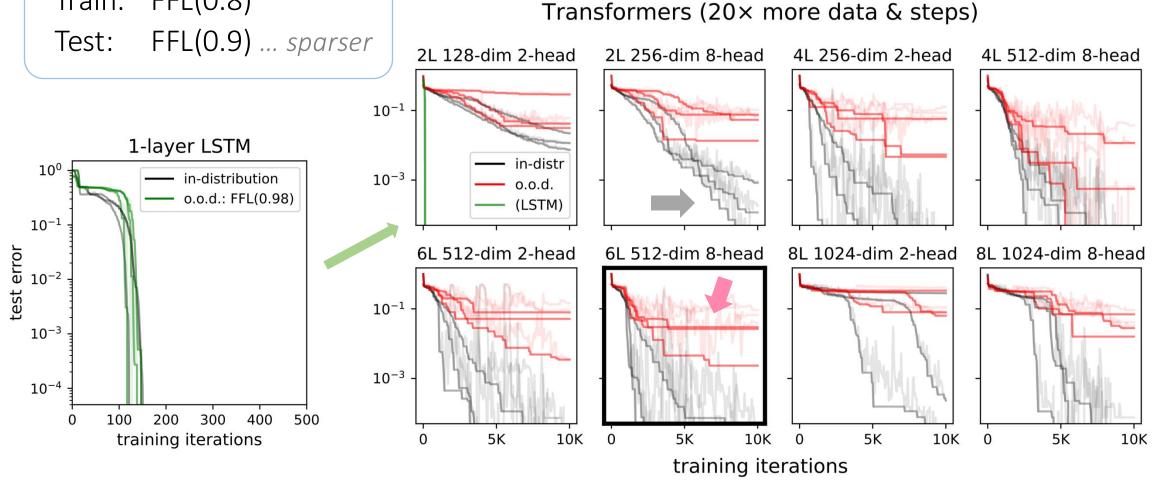
Why FFLM?

- An atomic unit underlying reasoning tasks [LAGKZ23a].
- Simple yet interesting.

FFLM Results

Attention glitches

Train: FFL(0.8) T = 512



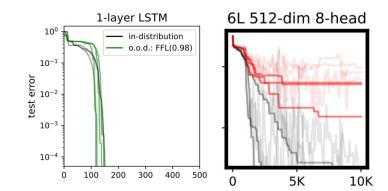
Attention Glitches

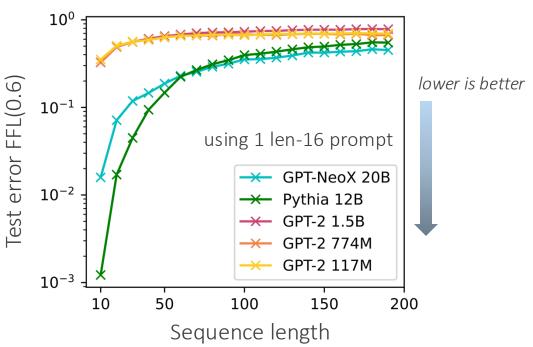
 $FFL(p_i)$: various T, $p_w = p_r = 0.2$.

Def: imperfect hard retrieval.

- (R1) Transformers exhibit a long tail of errors.
- (R2) 1-layer LSTMs extrapolate perfectly.
- (R3) 10B-scale *natural-language* models are not robust either.

```
Alice turns the light off.
Then, Bob eats an apple.
Then, Bob eats a banana.
Then, Alice turns the light on.
Then, Bob eats a banana.
Then, Bob eats a banana.
Then, Bob eats an apple.
Now, the light is
```





What causes glitching attentions?

$$FFL(p_i): p_w = p_r = \frac{1 - p_i}{2}.$$

Not because of limitation on representation power (solvable with 2-layer 1-head).

Diluted soft attention: caused by more items in the softmax.

$$a_{\max} = \frac{\exp(z_{\max})}{\exp(z_1) + \dots + \exp(z_t) + \exp(z_{\max})}$$
e.g. ignores, earlier writes

- Pointed out in prior work [Hahn 20, Chiang & Cholak 22].
- Possible mitigation: scaling the logits (e.g. by log T), hard attention.

What causes glitching attentions?

$$FFL(p_i): p_w = p_r = \frac{1 - p_i}{2}.$$

Not because of limitation on representation power (solvable with 2-layer 1-head).

Diluted soft attention: more items in the softmax: scaling, hard attention.

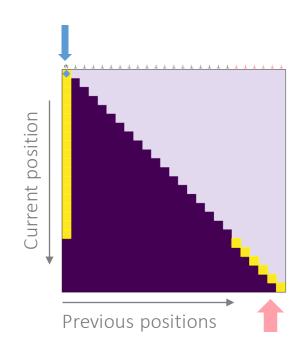
 \rightarrow failure on <u>denser</u> sequences (more w)

Wrong argmax: hard attention won't work.

Setting: simple flip-flop: 1-layer 1-head.

Unlikely to precisely meet a necessary condition for linear positional encoding.

 \rightarrow failure on <u>sparser</u> sequences (fewer **w**)



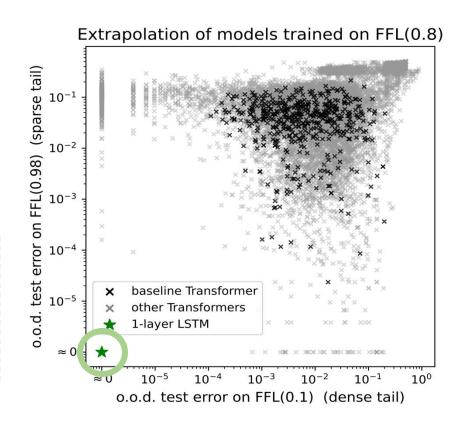
Mitigations to attention glitches

- Incorporating OOD data.

 Ideal solution No OOD issue if everything is in distribution! :)
- Resource scaling: larger, train for longer.
 Fresh samples → better coverage

- Standard regularization indirect e.g. weight decay, dropout, position encoding.
- Attention-sharpening losses (entropy, $-\ell_2$, $-\ell_\infty$)

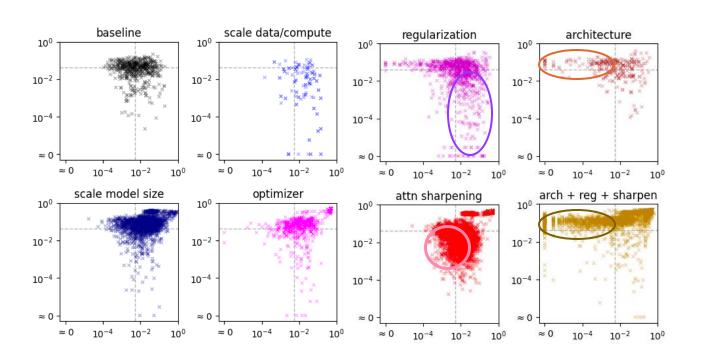
No perfect mitigations, except for OOD data.

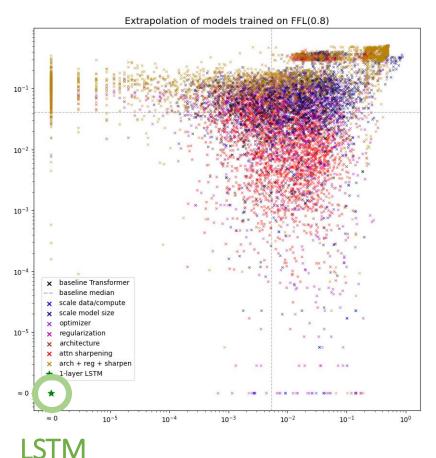


Attention glitches: no perfect mitigations

Dense-sparse trade-off: seldom improve both.

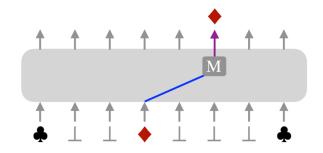
denser = x-axis, sparser = y-axis.





OOD failures – the 2 atomic units

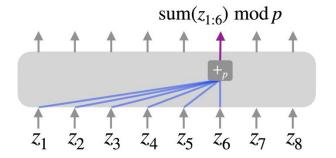
• Flip-flop → sparse attention



Attention: Flip-Flop Language Modeling

... the simplest setup where (closed-domain) hallucination occurs.

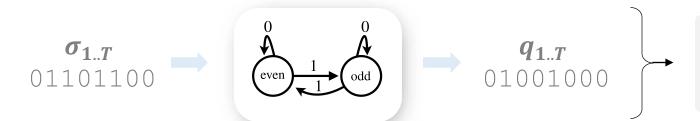
Parity → uniform attention



Solution: periodic activation, e.g. sin(x).

Empirical results

19 automata



Transformer with standard training

Can shortcuts be found?

Yes; e.g. gridworld.

Robust Out-Of-Distribution?

Failure of: 1. Attention (flipflop)

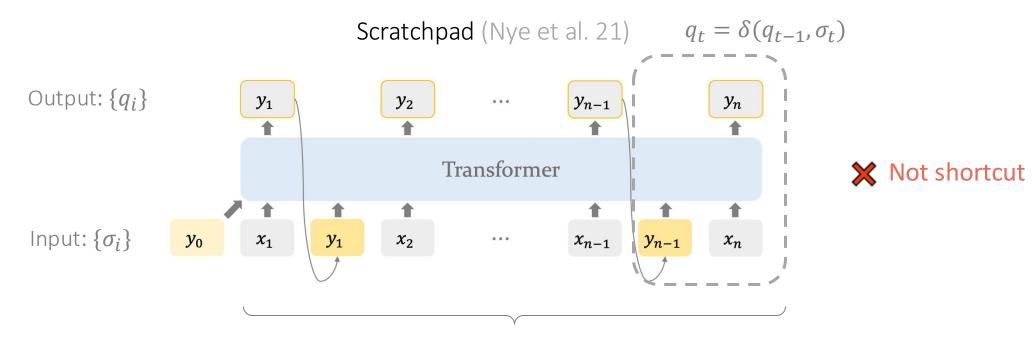
2. MLP (parity)

Any fixes?

Computational shortcuts exist, but practical statistical shortcuts are brittle.

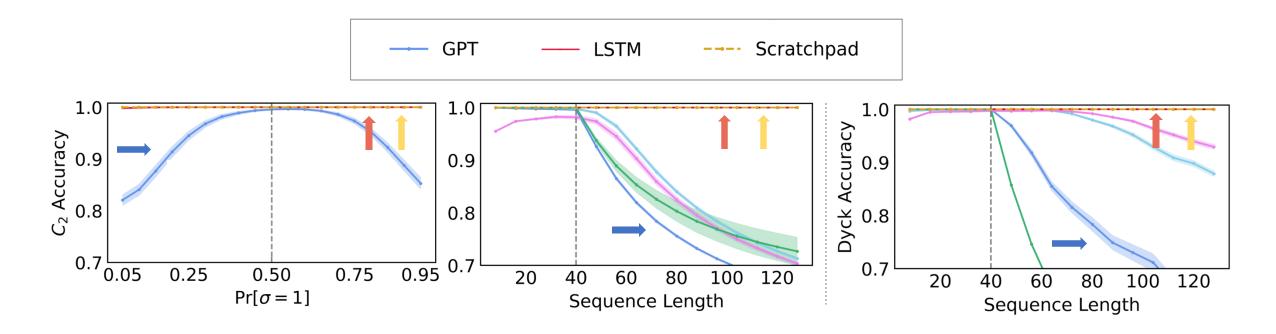
Autoregressive mode of Transformers

Fix to OOD: iterative/autoregressive solutions: use q_{t-1} as inputs.



No longer parallel across positions

Autoregressive mode of Transformers



Transformers generalize, when made autoregressive with scratchpad [Nye et al. 22].

→ Can we learn shortcuts that generalize? ... attention glitches (flipflop)

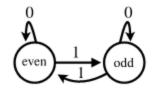
Transformers Learn Shortcuts to Automata

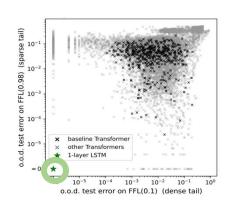
Parallel solutions to sequential reasoning problems.

- Theory: Transformers learns o(T) layers shortcuts.
 - All \mathcal{A} : $O(\log T)$ layers: divide-and-conquer.
 - This is also the lower bound for the general case.
 - All solvable A: $O_{|Q|}(1)$ layers: Krohn-Rhodes Theory.
 - Special case: O(1)-layer simulation.



- *Benefit*: sequential computation steps ≪ reasoning steps.
- Weakness: the shortcuts are brittle OOD, hallucination.
 - No perfect parallel solutions yet.





Discussions

What can we learn from small-scale experiments?

- FFLM extensions: more values, selection criteria (multi-step reasoning).
- What insights transfer across scale? e.g. sharpen attention for code/math?

Perfect accuracy? More comprehensive metrics; understand the errors.

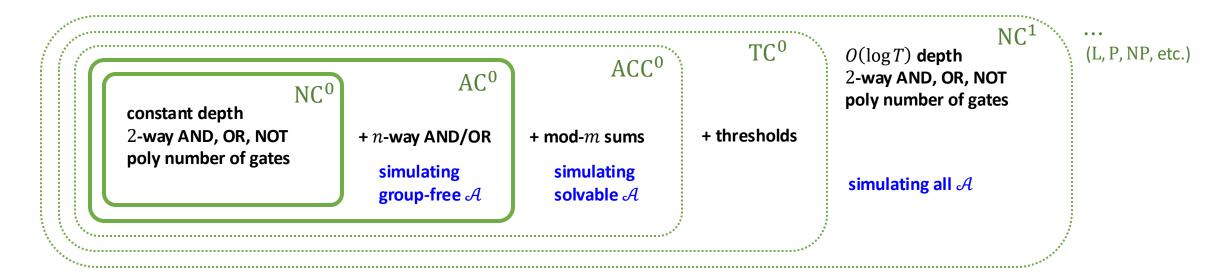
Architectural changes? e.g. recurrence, Mamba (S6), built-in operators.

Theory? Representational, optimization (stability), generalization.

Appendix

Quantifying efficient parallel circuits

- Goal: formalize "Krohn-Rhodes implies efficient simulation"
- Low-depth parallel algorithms are best captured by circuit complexity



Embarrassingly open: are any of the proper? $ACC^0 \stackrel{?}{=} NP$?

Factorization: from integers to groups

$$8 = 2 \times 2 \times 2$$

• Why groups get complicated: combinatorial explosion

```
C_8: mod-8 addition E_8\cong C_2\times C_2\times C_2: 3-bit vectors under XOR C_4\times C_2: non-interacting mod-4 & parity D_8\cong C_4\rtimes C_2: rotations/reflections of a square Q_8: multiplication of unit quaternions Q_8: non-abelian: Q_8
```

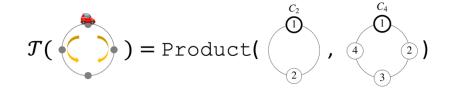
• Finite group theory: classical toolbox for understanding symmetries

$$C_8, E_8, C_4 \times C_2, D_8, Q_8 \leq (C_2 \wr C_2) \wr C_2$$

Jordan-Hölder factors (simple groups)

Krasner-Kaloujnine embedding (wreath product)

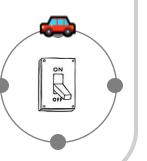
Decomposition: the glue



Direct product \times , e.g. $\mathcal{C}_4 \times \mathcal{C}_2$

Two independent groups

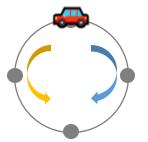
- $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_1, h_1h_2)$
- e.g. car + a light switch

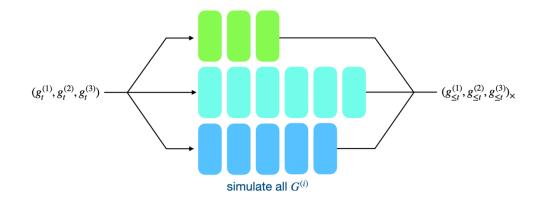


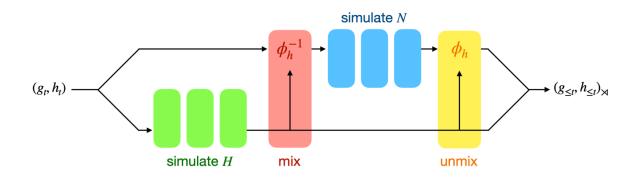
Semidirect product \times , e.g. $\cancel{\triangleright} D_8 \cong C_4 \times C_2$

Two *interacting* groups

- $(g_1, h_1) \cdot (g_2, h_2) = (g_1 h_2 g_2 h_2^{-1}, h_1 h_2)$
- e.g. car + direction toggle



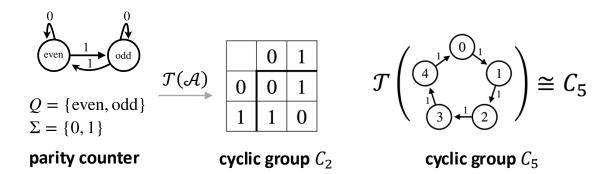


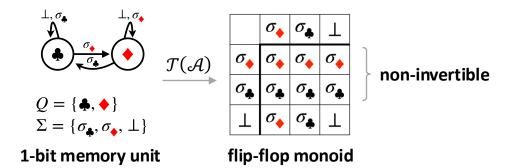


Transformation semigroups

$$q_t = \left(\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)\right)(q_0)$$

 $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition (associativity).





Group G: a set G with operation $G \times G \rightarrow G$.

- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: $a \cdot e = e \cdot a = a$
- Inverse: $\forall a \in G, \exists b \in G \text{ s.t. } a \cdot b = b \cdot a = e$

Semigroup G: a generalization of group.

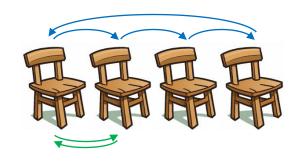
- Associativity.
- (+ Identity: a monoid.)

What about *semigroups*?

 $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition

More complicated: rank collapses.

n-player musical chairs



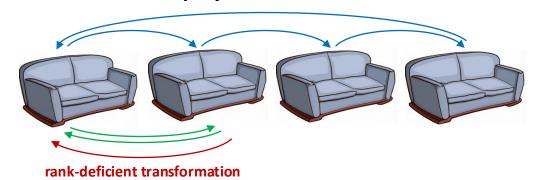
$$Q = \{\text{positions of } n \text{ players}\}$$

$$\Sigma = \{ \text{ cycle, swap } \}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

 $\mathcal{T}(\mathcal{A}) = S_n$: all n! permutations on [n]

n-player musical sofas



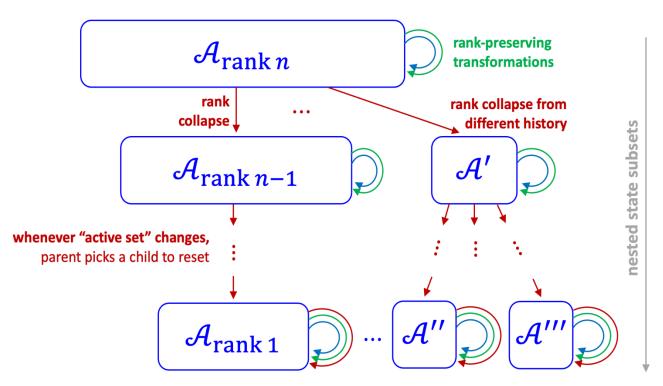
$$Q = \{ \text{positions of } n \text{ players} \}$$

$$\Sigma = \{ \text{ cycle, swap, merge } \}$$

$$\mathcal{T}(\mathcal{A}) = T_n$$
: all n^n functions $[n] \to [n]$

Krohn-Rhodes Intuitions

Tracking rank collapses (holonomy decomposition)



Number of layers: $(recall: |G| \le n^n)$

- Solvable groups: $O(\log |G|)$
 - mod counter
- Permutation-reset semiautomaton: $O(\log |G|) + 2 \le O(|Q| \log |Q|)$.
 - mod counter + memory unit
- Semiautomaton: $\leq |Q|$ levels.

Training with limited supervision

Less ideal setups?

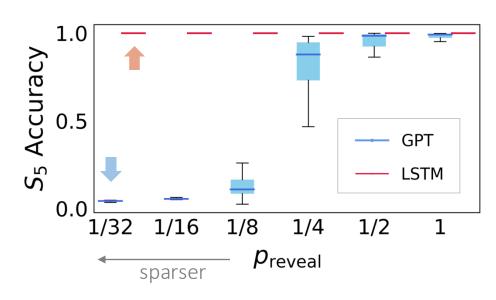
Indirect supervision

train & test on a function of q_t .

$\mathrm{Dyck}_{4,8}$	Grid_9	S_5	C_4	D_8
stack top	$\mathbb{1}_{ ext{boundary}}$	$\pi_{1:t}(1)$	$\mathbb{1}_{0 \bmod 4}$	location
100.0	99.8	99.8	99.7	99.8

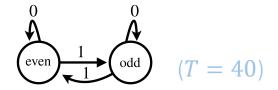
Incomplete supervision

 q_t is revealed w.p. $p_{\text{reveal}} \in [0,1]$.

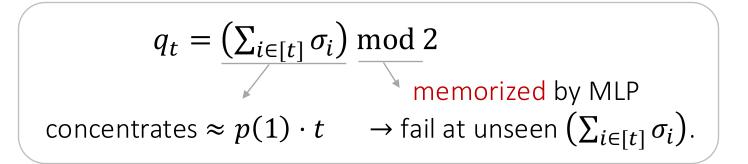


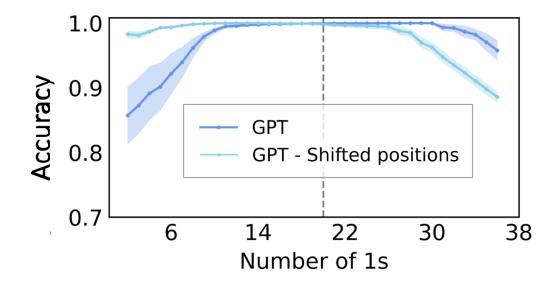
LSTM is always 100% → Open: *How to improve Transformer training?*

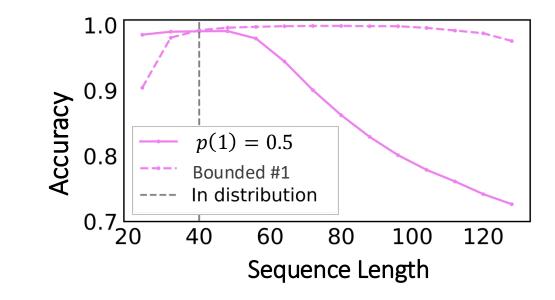
OOD Generalization - Parity



- train: p(1) = 0.5
- test: other p(1).



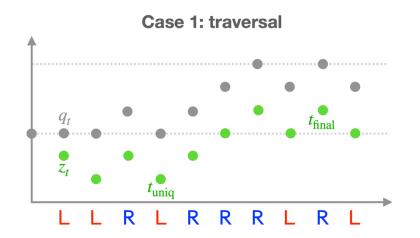


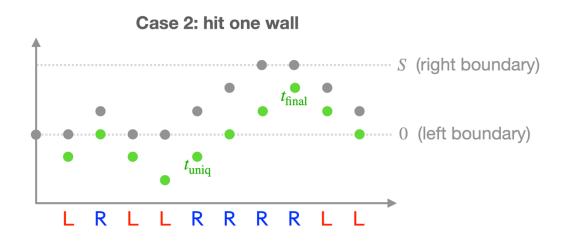


O(1) layer for (1) (2) (3) (4)

Parallel boundary detector:

- Compute prefix sums $z_t \coloneqq \sum \sigma_{1:t}$ (ignoring boundaries);
- At each t, find most recent $t_{\mathrm{uniq}} < t$ such that $z_{t_{\mathrm{uniq}}:t}$ has n(#states) unique values;
- Then $t_{\text{final}} \coloneqq \max \left(\underset{t_{\text{uniq}} \le \tau \le t}{\operatorname{argmin}} z_{\tau} \right)$ is last boundary collision.

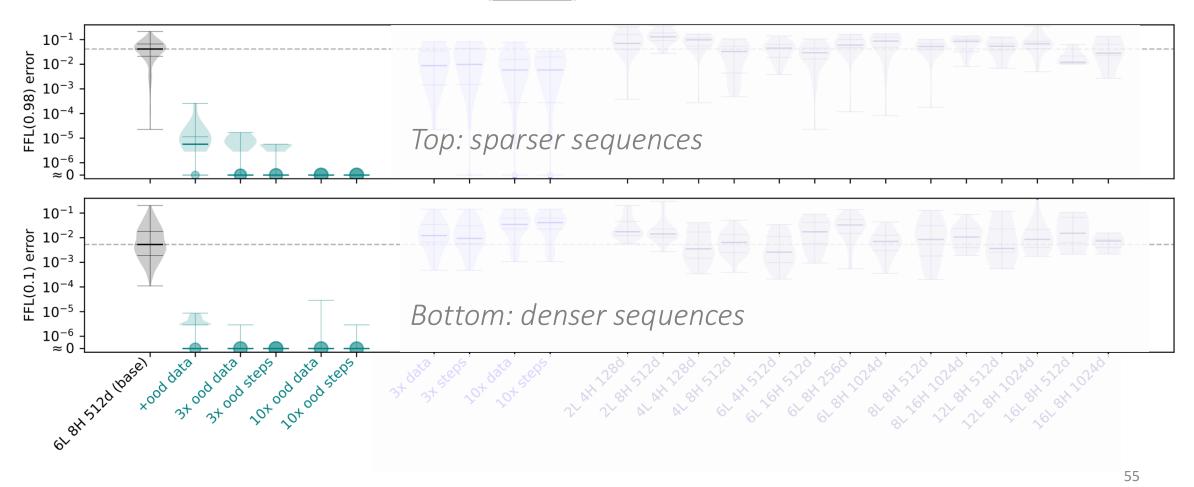




Direct mitigations

(R4) Incorporating OOD data ("priming") works the best, by far.

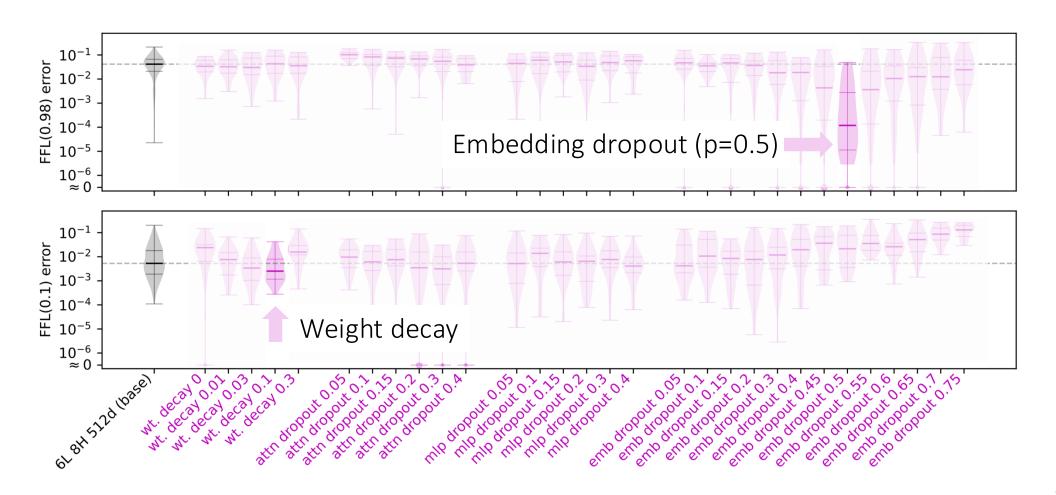
[Jelassi 23]



Indirect mitigations

(R6) Standard regularizations have various influences.

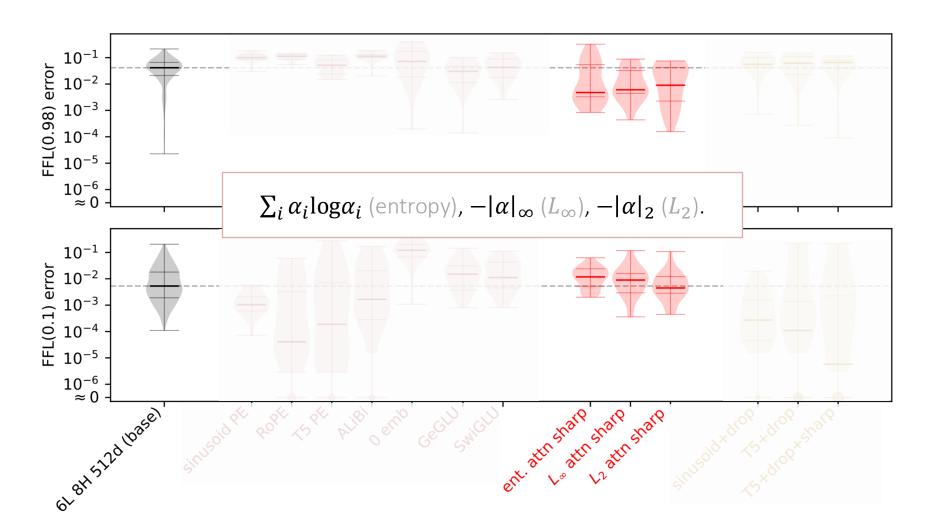
- Weight decay
- Dropout (attention, MLP, embedding)



Indirect mitigations

Attention-sharpening regularization

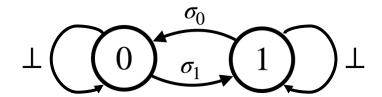
(R6) Standard regularizations have various influences.



Preliminary interpretability results

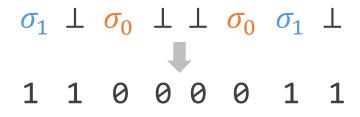
Simpler setup: flip-flop monoid

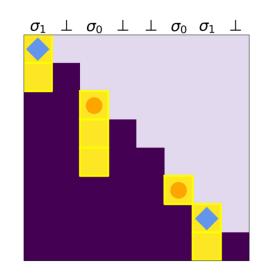
• $\mathbf{w0} = \sigma_0$, $\mathbf{w1} = \sigma_1$, $\mathbf{i} = \bot$; read at each step.



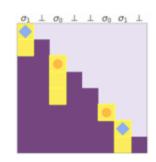
Solvable by 1-layer 1-head Transformers.

• 1-sparse attention: on the closest **0**,**1**.

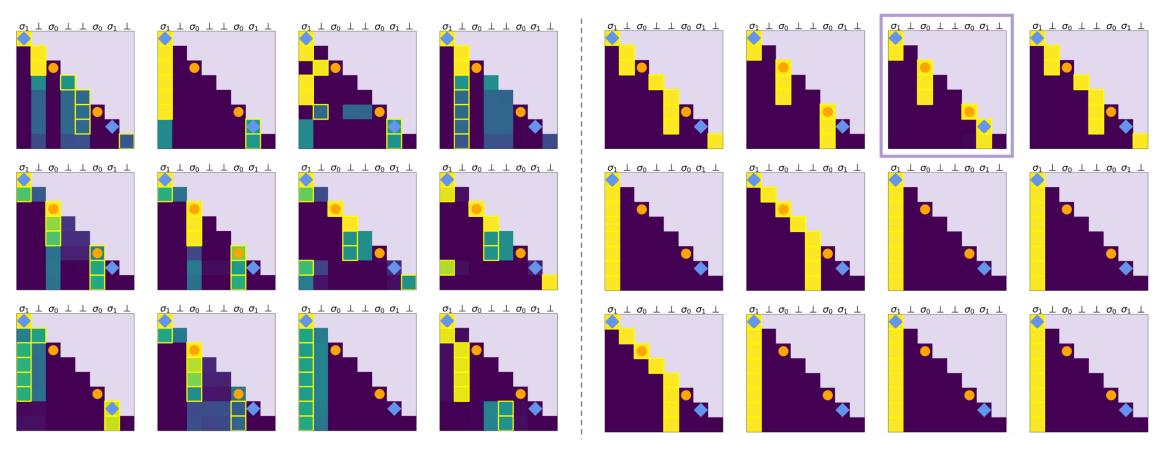




What solutions are found?

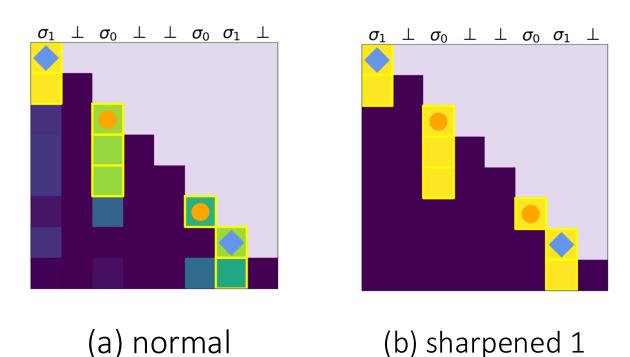


6-layer 8-head ... normal (left) vs attention-sharpened (right)

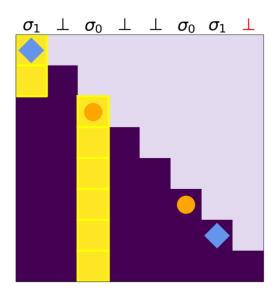


What solutions are found?

1-layer 1-head: normal vs attention-sharpened.



other dense/sparse patterns exist



(c) sharpened 2 wrong prediction!