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1. Motivation
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2. Overview
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4. Experiments
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3. Temporal Modular Network (TMN)

We conduct experiments on the DiDeMo dataset.

The proposed temporal modular network

takes as input a query-video pair and performs 4 | e & o | . |
‘ntra-video retrieval in three stages: 4 Video Proposal @ 02 Training: network modules and scoring layers are jointly trained
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3. Temporal localization from segment level
correspondence scores.

Ablation study: e Temporal attention e Rank loss

e Use of tree structures e Type of structure
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i) A dog sniffs another dog and then jumps away.

V) A cheerleader runs away.




